
Enabling SDN Applications on Software-Defined
Infrastructure

Thomas Lin, Joon-Myung Kang, Hadi Bannazadeh, and Alberto Leon-Garcia
Department of Electrical and Computer Engineering

University of Toronto, Toronto, ON, Canada
Email: {t.lin, joonmyung.kang, hadi.bannazadeh, alberto.leongarcia}@utoronto.ca

Abstract—In this paper we discuss how to enable Software-
Defined Networking (SDN) applications on Software-Defined
Infrastructure (SDI) which is an approach for integrated control
and management of converged computing and networking re-
sources. Current separated resource management for computing
or networking resources is not sufficient for addressing appli-
cations and multimedia services that require guaranteed service
and quality levels. In addition, current resource management is
not capable of managing heterogeneous resources that include
computing and networking resources in combination with other
resources such as programmable hardware, GPUs and network
processors. We present an SDI that provides pluggable resource
management modules for scheduling, networking control, fault
management, and so on. This paper focuses on the design and
implementation of a networking control module that enables SDN
applications using information available from other modules.
Currently, we have deployed the network control module in
the practical multi-tier cloud infrastructure, SAVI Testbed. We
present real measurements that show the functional evaluation
results of our network control module.

I. INTRODUCTION

In cloud computing, a cloud controller is responsible for
taking the high-level user descriptions, and then managing
computing resources, placing virtual machines (VMs), al-
locating storage, deciding where the image will run, and
attaching networking to meet resource needs [1]. Software-
defined networking (SDN) is an approach to building data
networking equipment and software that separates and ab-
stracts elements of these systems [2]. SDN allows system
administrators to provide network services more easily through
abstraction of lower-level functionality into virtual services. An
SDN controller is an application that manages flows to enable
more flexible, customized, and intelligent networking. SDN
controllers are based on protocols, such as OpenFlow [3], that
allow servers to configure switches on how to process packets
and where to forward them.

Current approaches that use two separated resource man-
agement systems (one for computing and one for networking)
are not sufficiently capable and flexible to address applications
and multimedia services that require guaranteed service and
quality levels. The end-to-end quality of a service or applica-
tion is determined by the performance of underlying comput-
ing and networking resources, and so these resources must
generally be managed in coordinated fashion. Accordingly,
approaches that separate resource management of cloud or net-
work resources are not able to provide guarantees. Integrated
management of computing and networking resources enables

new management capabilities. For example, unlike previous
approaches, integrated management of converged resources
can provide energy-aware forwarding and resource allocation
because energy consumption information for the computing
cloud and the network are shared.

While computing and networking resources provide the
bulk of the support for cloud-based applications, other re-
sources such as programmable hardware, GPUs, and network
processors provide critical support for certain services and
applications. Current resource management systems are not
capable of managing heterogeneous resources that include
computing and networking resources in combination with other
resources. In addition, current management systems do not
apply virtualization methods to heterogeneous resources, and
therefore are not capable of realizing the flexibility, scalabil-
ity and economic advantages that would be inherent in the
integrated management of converged heterogeneous resources.

To overcome shortcomings of current management ap-
proaches, the Smart Applications on Virtual Infrastructure
(SAVI) project has proposed Software Defined Infrastructure
(SDI) as an approach for integrated control and management of
converged heterogeneous computing and networking resources
in software [4], [5]. In SDI, a centralized SDI manager controls
both computing and networking resource management through
a cloud controller and an SDN controller. SDI has pluggable
resource management modules for scheduling, networking
control, fault management, and etc. In this paper, we focus
on a networking control module to enable SDN applications
on SDI by defining north- and south-bound APIs between
an SDI manager and an SDN controller. Currently, we have
deployed the network control module in the practical cloud
infrastructure, SAVI Testbed, and demonstrated how to manage
not only physical networking but also virtual networking based
on the deployed system [6]. We show real measurement data
for the running networking control module in the SAVI Testbed
by increasing the number of virtual machine instances or
control modules.

The paper is organized as follows. Section II describes
related work from SDN, OpenFlow, FlowVisor, as well as the
integration of cloud and SDN controllers. Section III presents a
high-level architecture and design of an SDI resource manage-
ment system. Design and implementation of a network control
module in SDI are described in Section IV. In Section V,
we present example SDN applications that run on the SDI
networking control module. Functional evaluation results of
our proposed SDI network control module are shown in
Section VI. Finally, conclusions and future work are presented978-1-4799-0913-1/14/$31.00 c© 2014 IEEE

in Section VII.

II. RELATED WORK

Recently, a tremendous amount of research has addressed
cloud data centers and software-defined networking (SDN).
Only a few efforts have addressed the integration of cloud
computing and SDN, namely in terms of Network-as-a-Service
(NaaS), and integrated management as in SDI.

Benson et al. proposed CloudNaaS as a cloud networking
platform for enterprise applications [7] in which a networking
framework extends the self-service provisioning model of the
cloud beyond virtual servers and storage to include a rich
set of accompanying network services. CloudNaaS allows
customers deploying their applications on the cloud to access
virtual network functions such as network isolation, custom
addressing, service differentiation, and the ability to deploy
middlebox appliances to provide intrusion detection, caching,
or application acceleration.

OpenFlow is a leading mechanisms for providing SDN in
cloud datacenters [3]. OpenFlow controllers such as NOX [8],
POX [9], Ryu [10], or Floodlight [11] are available and written
in different programming languages. Previous research have
investigated the performance and scalability of the controllers
[12], [13], [14], [15]. Currently, we are using the Ryu Open-
Flow controller in our SAVI Testbed [5] as an SDN controller.

In order to manage networking resources using OpenFlow
in a cloud datacenter, Neutron (formerly Quantum in the Open-
Stack project) can be used to provide NaaS between interface
devices managed by other OpenStack services. One of the main
features in Neutron is to enable innovation plugins (open and
closed source) that introduce advanced network capabilities
for OpenFlow controllers. Recently we have implemented an
SDI plugin for Neutron to fully integrate the SDI manager in
OpenStack.

Sherwood et al. proposed a FlowVisor to enable switch
virtualization so that the same hardware forwarding plane can
be shared among multiple logical networks, each with distinct
forwarding logic [16]. Like a hypervisor for system virtualiza-
tion, the FlowVisor uses OpenFlow as a hardware abstraction
layer to sit logically between the control and forwarding paths
on a network device for network virtualization. In our current
system, the SDI manager controls a FlowVisor for creating
slices, assigning virtual networks to the slices, or deleting
slices.

III. OVERVIEW OF SDI RESOURCE MANAGEMENT

In this section, we present a system architecture and design
of an SDI Resource Management System (RMS) for converged
heterogeneous resources.

A. System Architecture

Figure 1 shows a high-level architecture of the SDI RMS,
in which an SDI manager can control and manage the re-
sources using a cloud controller, a network controller, and a
topology manager. External entities obtain virtual resources in
the converged heterogeneous resources via the SDI RMS. The
converged heterogeneous resources are composed of virtual
resources and physical resources. Virtual resources include

Fig. 1. High-level architecture of resource management system for SDI

any resource virtualized on the physical resources such as
virtual machines. Physical resources include any resource that
can be abstracted or virtualized, such as computing servers,
storage, and network resources (routers or switches). The SDI
RMS provides general resource management functions for
the converged heterogeneous resources to the external enti-
ties. The resource management functions include provision-
ing, registry/configuration management, virtualization, alloca-
tion/scheduling, migration/scaling, monitoring/measurement,
load balancing, energy management, fault management, per-
formance management (delay, loss, etc.), and security manage-
ment (authentication, policy, role, etc.). The external entities
can be applications, users (service developers or providers),
and high-level management systems.

We envision the SDI manager as a way to realize major in-
tegrated resource management functions: fault tolerance, green
networking (energy efficient and/or low-carbon emitting), path
optimization, resource scheduling optimization, network-aware
VM replacement, QoS support, real-time network monitoring,
and flexible diagnostics based on network topology informa-
tion from a topology manager. The cloud controller is respon-
sible for taking the high-level user descriptions and managing
computing resources, placing virtual machines, and allocating
storage. The SDN controller takes a network specification and
translates it into high level configuration commands that can be
installed on SDN-enabled networking resources. The topology
manager maintains a list of the resources, their relationships,
and monitoring and measurement data of each resource. Fur-
thermore, the topology manager provides up-to-date resource
information to the SDI manager for topology-aware resource
management. The SDI manager uses the cloud controller for
computing resource provisioning, migration, load balancing,
and scaling, while the cloud controller provides the requested
virtual computing resources to the SDI manager. Similarly,
the SDI manager uses the SDN controller for controlling
and managing networking resources, and the SDN controller
provides virtual network resources and monitoring data to the
SDI manager in return. The SDI manager uses the topology
manager for setting resource cost properties and metrics, as
well as updating resource data, whereas the topology manager
provides physical and virtual network topology and associated
status information, as well as resource monitoring and mea-

Fig. 2. High-level design of SDI resource management system using
OpenStack and OpenFlow controller

surement data to the SDI manager.

B. Design of SDI Control and Management System

Figure 2 shows that the design of a SAVI Smart Edge node
based on the SDI architecture includes four majors parts: 1)
Edge node network, 2) OpenStack, 3) OpenFlow controller,
and 4) SDI manager [4]. In the Edge node network, a variety
of heterogeneous computing and networking resources are
available.

As shown in Figure 2, the SDI manager controls and
manages virtual computing resources by virtualizing physical
computing resources using OpenStack [17]. The OpenFlow
controller [3] is used for controlling networking resources. The
OpenFlow controller receives all events from the OpenFlow
switches and creates a flow table including actions. The SDI
manager performs all management functions based on the
data from the OpenStack and the OpenFlow controller, and
determines appropriate actions for computing and networking
resources. The SDI manager has a module manager to manage
specific functional modules such as a scheduling module,
a networking control module, a fault tolerant management
module, or a green networking module. In this paper we focus
on the networking control module which is responsible for
enabling SDN applications, which we will discuss in detail in
Section 4. Details of the other modules are out of the scope of
this paper. The OpenFlow controller may include a proxy that
mediates access from multiple OpenFlow controllers to the
networking resources. In our system, a FlowVisor [16] acts
as a transparent proxy between the OpenFlow switches and
multiple OpenFlow controllers. The FlowVisor creates slices
of network resources and delegates control of each slice to
a different controller, while enforcing isolation between the
slices. The introduction of FlowVisor enables any user to
use their own OpenFlow controller, even though it may be
outside the system. Internally, we have used the Ryu OpenFlow

Fig. 3. Design of network control module in SDI

controller [10]. Via FlowVisor, any user can then access and
control his or her own slice of the network.

As in SDN, we have separated the data and control planes
in the Smart Edge. The OpenStack and OpenFlow controller
are modules for communicating directly with computing and
networking resources, whereas the SDI manager in Figure 2
of the Smart Edge is responsible for C&M tasks.

IV. NETWORK CONTROL MODULE IN SDI MANAGER

In this section, we will describe the design and current
implementation of the network control module running atop
of our SDI manager.

A. Design of Network Control Module

Figure 3 shows a high level architectural view of the
network control module. Essentially, the module enables the
ability to run one or more network control applications (e.g.
Learning Switch, Topology Discovery, etc.). These applica-
tions define the behaviour of the network and are able to
interact with the network elements below via a programmatic
interface, much like regular network operating system ap-
plications. However, the implementation of the backend for
handling the interaction with the network varies depending on
the SDN controller being utilized below the SDI manager.

The network control module defines a set of Representa-
tional State Transfer (RESTful) APIs [18] that can be used
by the SDN controller and other external clients, such as the
Neutron OpenStack component [19] for reporting changes in
the network configuration. As seen in Figure 3, northbound
APIs are assigned to one of many backend controllers for
processing. New APIs and corresponding controllers can be
easily added to expand the functionality supported by the
network control module. For example, the current version of
the network control module supports port bonding and the use
of FlowVisor, both of which are configurable via RESTful
APIs.

Since the proper execution of a network control application
may depend on the current configuration of the network,
the network control module saves any configuration settings
that may be needed in different contexts (see Figure 3). The
configuration is then used by the network control applications
to provide a context for the decisions it must make. As this
information may need to be accessed on a per-packet basis, it
is kept in memory rather than in a remote database in order to
reduce the access latency. To protect against losing the entire
configuration in the event of a system crash, any configurations
that cannot be re-learned on-the-fly (e.g. ports on a switch to
be bonded) are pushed to an SQL database (not shown in the
Figure 3) as a precaution. In the event that the SDI manager
crashes, the configuration settings can be immediately reloaded
upon start-up of the network module in order to recover its
previous state.

B. Northbound APIs

We define the set of northbound APIs to be calls that
originate from some external entity and are received by the
network control module. These APIs enable the module to
receive notifications of changes in the network configuration
from external clients as well as event messages from the
SDN controller (e.g. packet-in event). Network configuration
changes may include, but are not limited to, events such as the
creation/deletion of new virtual networks, registration/removal
of ports in the system, the migration of an interface from
one virtual network to another, the delegation of control over
a virtual network, and etc. As these notifications affect the
configuration of the network, they are handled synchronously
by the SDI manager in order to ensure that future packets are
processed with respect to the most up-to-date network config-
uration available. Conversely, packet-in events, which arrive
much more frequently and may take some time to process,
are inserted into a queue and handled asynchronously by the
system in order to prevent delaying (or possibly blocking) the
receipt of configuration change notifications.

C. Southbound APIs

The southbound APIs are defined as those that originate
from the network control module and are received by the SDN
controllers running below the SDI manager. Once a network
control application reaches a verdict on how to handle a packet,
it must contact the SDN controller in order to execute its
decision. These southbound APIs are controller-dependent and
thus vary in their implementation. As different controllers may
have different APIs, the SDI manager maintains a set of drivers
for each type of controller. In our current implementation, these
APIs are used to inform the controller on how to handle a
packet (e.g. drop, flood, or output a packet, etc.) as well as
to configure the flow table in switches. The benefit of this
design is that it does not restrict the SDI manager to using
any one controller, and opens up the possibility of using any
future SDN controllers that may use non-OpenFlow protocols
to communicate with the network fabric. In essence, from the
viewpoint of the SDI manager, the SDN controller is merely
a network interface layer.

Another important set of southbound APIs initiated from
the SDI manager are those used to configure and control
FlowVisor. FlowVisor comes with a default set of RESTful

APIs, using JSON-RPC, that can be used by any external
client. Like the other drivers used to communicate with the
SDN controllers, the SDI manager also has a separate driver
specifically for communicating with FlowVisor using its es-
tablished APIs.

D. OpenStack, Ryu, and FlowVisor

The current deployment of the SDI manager within the
SAVI testbed [5] integrates it with OpenStack, and uses the
Ryu OpenFlow controller [10] as the primary SDN controller.

1) Interaction with OpenStack: Neutron, the networking
component of OpenStack, is a system that aims to provide
“Networking as a service” [19]. Neutrons responsibility is to
keep all the necessary network-related information (e.g. MACs,
attached interfaces, etc.) of the virtual computing resources lo-
cated throughout the cloud. For the task of actually controlling
the network, Neutron delegates this responsibility to a number
of plugins (i.e. backend controllers). We use the network
control module APIs to allow Neutron to relay the networks
configuration information to the SDI manager. Originally, we
modified the Ryu plugin client to act as a proxy to forward
all the configuration change notifications regarding virtual
networks and virtual interfaces to the SDI manager. We have
recently developed a plugin specifically for our SDI manager
and thus have fully integrated it with Neutron. Additionally,
we have extended the set of information that Neutron reports
to its plugin to also include information regarding the assigned
MAC addresses and, where it is applicable, the IP addresses
of interfaces. With this information, the SDI manager has the
networking-related context to properly control and manage the
communications and network connectivity between the various
computing resources within the cloud.

2) Interaction with the SDN Controller: While any SDN
controller can be used below the SDI manager, it is important
that whichever controller is chosen is able to perform certain
tasks. In particular, the SDN controller must support:

1) RESTful web services to receive and process requests
from the SDI manager. Through these APIs, the SDN
controller serves as an OpenFlow interface layer for
the SDI manager and any other components wishing
to interface with the network switches. Examples of
currently available APIs in our deployment include
the ability to write and delete flows into switches,
send custom packets from switches, query switch
statistics, and query the latest network topology;

2) An OpenFlow event forwarding application that for-
wards event notifications from network switches to
the SDI manager. As the network control module is
responsible for handling the packet routing decisions
for the network, the SDN controller must forward the
relevant information to the SDI manager. The appli-
cation in use in our SAVI Smart Edges require only
the input port, datapath ID, source, and destination
MACs in order to make a routing decision. Thus,
upon receipt of a packet-in event, the forwarding
application must parse the packet for the necessary
header fields and send this information northbound
to the SDI manager via a RESTful request.

In our deployment, the above two tasks are performed by
applications running on top of Ryu. An optional, third applica-
tion that we have running is a topology discovery application
that periodically sends Link Layer Discovery Protocol (LLDP)
packets through the network to discover the various active links
in the system. The resulting topology can then be queried via
a RESTful API. While we can also run a topology discovery
application on the network control module itself, we prefer to
delegate tasks that do not benefit from a centralized view of
the network to the lower layers to avoid the overhead of extra
API calls going through multiple components.

3) Interaction with FlowVisor: The addition of FlowVisor
into the SAVI testbed allows users the option of delegating
control of one or more virtual networks to another OpenFlow
controller running outside the system. Since the SDI manager
has a complete view of the network, including the MAC
addresses of computing resources interfaces as well as which
ports in the network they are connected to, it is well positioned
to make decisions on how to slice the network into separate
FlowSpaces. Via the FlowVisor driver, the SDI manager is able
to install a series of FlowSpace entries that effectively dele-
gates control over a subset of the underlying network topology
to a users guest controller. Currently, the FlowSpace definitions
are based on three parameters, that of the datapath ID, the
port number, and the MAC address. From this information,
we slice the network at L2, thus granting users the freedom
to experiment with novel networking protocols pursuant of the
goal to support Future Internet research on the SAVI testbed.

If no networks have been delegated, FlowVisor has a
default admin slice with a corresponding default rule matching
all flows and set at the lowest priority level. This default rule
forwards all packets to the main SDN controller, which in
turn forwards the relevant packet information up to the SDI
manager.

V. SDN APPLICATIONS

Since the network control module stores the network con-
figuration, it is able to provide the proper context from which
the networking application(s) bases its decisions on. All the
SAVI Smart Edges currently run the same network control
application, which is primarily designed to ensure the proper
isolation of traffic between each virtual network as defined by
Neutron. In this section, we will briefly describe the logic of
our isolation mechanism as well as the other port bonding and
FlowVisor features currently supported in our application.

A. Virtual Network Isolation

The SAVI Edge application currently used to ensure the
proper isolation of virtual networks was developed on top of
a base application that was originally written by the creators
of Ryu. The application utilizes two key pieces of information
provided by Neutron: virtual network IDs, and a mapping of
each switch port throughout the network infrastructure to one
of these network IDs. With this information, the application
is able to determine which ports on a switch are allowed to
communicate with each other. Ports connected to the interfaces
of computing resources are always registered with the ID of
the virtual network to which they belong. The application
also defined a special-case “external” network ID, used to

Fig. 4. A Flowchart of Packet Handling Logic

signify that any port registered to this external network can
allow traffic from any virtual network to pass through it. Such
a special-case ID is needed due to inter-switch links, which
must support traffic from multiple tenants resources. When a
packet arrives through one of these external ports, the network
it belongs to is determined by the source MAC address of the
packet.

As previously mentioned, we have modified Neutron to call
the network module APIs in order to register the MAC-to-
network ID associations. This explicit registration is important
as it is used in two of the mechanisms we have in place
to prevent potential MAC address spoofing, which malicious
users may attempt use to bypass the network isolation. One
mechanism to prevent spoofing is a simple check to see if
the network ID associated with the source MAC address is
identical to the network ID associated with the port it is coming
from. Similarly, checks are made to ensure the network IDs
associated with the source and destination MACs are identical
as well. With the network configuration information regarding
the MAC and port associations with virtual network IDs,
the packet handler has enough context to properly process
incoming packets. The application essentially operates as a
per-virtual network learning switch.

B. Packet Handling Logic for Port Bonding and FlowVisor

As the network control module includes support for port
bonding and FlowVisor, our application must take this infor-
mation into consideration when processing packets. The ports
contained within a bond are pre-vetted at registration-time to
ensure they belong to the same virtual network. As shown
in Figure 4, if a packet arrives from a bonded port, rules
are automatically installed into the switch to ensure that the
other ports within the same bond cannot be used as the output
port (i.e. install pre-emptive drop rule). Additionally, if the
application determines that a flow rule to be installed where
the input port belongs to bond, additional flow rules will be
installed, with modified input port match fields, for each port
within that bond. Similarly, if the output port of a flow is
bonded, its actual output port for the flow will be chosen in
round-robin fashion over the ports within the bond.

Occasionally, if a problem occurs in FlowVisor that causes

FlowSpace rules to be deleted, a packet that was destined for
a guest OpenFlow controller will instead go to the default
SDN controller, which forwards it to the SDI network control
module to be handled. To cover such a case, the application
always checks if the network ID associated with a packets
source MAC has been delegated to a guest controller (See
Figure 4). If the network has been delegated, the application
first re-installs the appropriate FlowSpace rules if necessary,
then drops the packet, so that future packets will be routed to
the proper controller.

VI. EVALUATION

In this section, we perform a functional evaluation of our
network control module in SDI using the SAVI Testbed [5].
We first describe the experimental setup used to carry out the
evaluation, and we then present our experimental results.

A. Experimental Setup

We run the SDI manager in a server which has two Intel
Xeon E5-2650 CPUs with a total of 16 cores (32 hyperthreads),
clocked at 2.0 GHz per core, and 64 GB of system RAM. The
SDI manager itself is fully implemented using Python version
2.7.

To demonstrate the feasibility of the system, we designed
an experiment in attempt to discern the throughput and scala-
bility of the SAVI network application. After pre-loading the
queue with packets (see Figure 3), we start the application
and observe the throughput based on the queue consumption
rate. This experiment is repeated with increasing number of
instances of the control application.

The experiment uses a dedicated server on a minimal
installation of Ubuntu 12.04, in order to ensure a clean
evaluation of the control application. Since the experiment
aims to measure the maximum throughput of the SAVI network
application, this represents the worst-case scenario where the
SDI manager must do packet-by-packet processing. In the
network management of the SAVI Smart Edges, this will not
be the case as new packets will trigger flow table entries to be
installed into the OpenFlow switches.

B. Experimental Results

We report on the throughput of the network control module
running the SAVI network application. In order to observe
the scalability of our network control application, we run it
in a dedicated server. Figure 5 shows the total throughput
of packet-in requests through the system with the pre-loaded
queue against increasing number of control modules running
our SAVI network application. The total throughput is a sum of
each control modules throughput. The results show promising
results regarding the scalability of the network control module
atop the SDI manager, as the total throughput is near-linear
in the number of control module instances. It means that
the network control module can handle growing amounts of
packet-in requests in a graceful manner.

It is worth noting that the system presented herein is
currently used in all the SAVI nodes controlling the produc-
tion network. As of September 2013, the SAVI testbed [6]
comprises one Core node and six Edge nodes, all of which

Fig. 5. Throughput of packet-in requests vs Increasing the number of network
control module instances

Fig. 6. Hourly packet-in requests to the SDI manager of the largest node in
SAVI testbed

are available for providing resources to run applications or
experiments on. In order to show the current system is able
to handle the network load of the testbed, we picked the Core
node because it contains many active virtual machines and
running experiments. The Core node consists of one controller,
eleven interconnected computing servers (each running an
Open vSwitch [20] within), one object storage server, one
volume server, and two physical OpenFlow-enabled switches.
At the time of collecting the network load data of the Core
node, there were fourteen projects, fifty users, and about
one hundred and fifty virtual machines and other computing
resources for active experiments owned by SAVI researchers.
In terms of the load on the networking control module in the
SDI manager, we measured the number of packets received
by the network control module using dumpcap, which is a
command line traffic monitoring tool. Figure 6 shows the
packet-in requests per hour over roughly four weeks on the
node. The results show that our network control module is
able to completely processes any amount of requests from all
running virtual machines and computing resources in the SAVI
testbed in a steady manner. As a result, we believe that this
demonstrates the practicality of our network control module to
enable SDN applications on real multi-tier cloud datacenters.

VII. CONCLUSIONS

In this paper we have presented an SDI resource manage-
ment system that provides integrated control and management
for converged heterogeneous resources using a cloud controller
and an SDN controller. We have proposed how to enable SDN
applications using a networking control module in the SDI
manager, as well as defined the southbound and northbound
APIs for communication between the SDI manager and SDN
controller. Some sample SDN applications, such as virtual net-
work isolation and the packet handling logic for port bonding
and FlowVisor, were discussed as well. We have shown that the
throughput of our network control module in SDI is scalable
by increasing the number of control module instances, thus
demonstrating its capacity for controlling and managing the
network load of an applications testbed. Currently, we have
deployed the network control module in the real practical
data center, the SAVI testbed and shown that it has been
working well. As the network control module is constantly
aware of both computing and networking resources within the
testbed, we believe this work presents a concrete first step
towards realizing more complex infrastructure-aware network
management schemes. In future work, we will improve the
performance and scalability of the SDI manager including the
network control module. We will also implement more SDN
applications for showing practicality and continue to monitor
and measure data to show the long-term stability of the system.

ACKNOWLEDGMENT

The work for all the published papers which follow is
funded in part or completely by the Smart Applications on
Virtual Infrastructure (SAVI) project funded under the Na-
tional Sciences and Engineering Research Council of Canada
(NSERC) Strategic Networks grant number NETGP394424-
10.

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Konwin-
ski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A
view of cloud computing,” Commun. ACM, vol. 53, no. 4, pp. 50–58,
2010.

[2] N. McKeown, “Software-defined networking,” SIGCOMM 2009,
Keynote, 2009.

[3] N. McKeown, T. Anderson, H. Balakrishnan, G. M. Parulkar, L. L.
Peterson, J. Rexford, S. Shenker, and J. S. Turner, “Openflow: enabling
innovation in campus networks,” Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[4] J.-M. Kang, H. Bannazadeh, H. Rahimi, T. Lin, M. Faraji, and A. Leon-
Garcia, “Software-Defined Infrastructure and the Future Central Office,”
in IEEE International Conference on Communications, IEEE ICC13 -
CNDC, Budapest, Hungary, June 9-13 2013.

[5] J.-M. Kang, H. Bannazadeh, and A. Leon-Garcia, “SAVI testbed:
Control and management of converged virtual ICT resources,” in
IFIP/IEEE International Symposium on Integrated Network Manage-
ment (IM 2013), Ghent, Belgium, 2013, pp. 664–667.

[6] J.-M. Kang, T. Lin, H. Rahimi, M. Faraji, H. Bannazadeh,
and A. Leon-Garcia, “2013 SAVI Testbed Workshop,”
http://www.savinetwork.ca/news-events/savi-testbed-workshop-agm-
july-4-5-2013/.

[7] T. Benson, A. Akella, A. Shaikh, and S. Sahu, “Cloudnaas: a cloud
networking platform for enterprise applications,” in Proceedings of the
2nd ACM Symposium on Cloud Computing. ACM, 2011, p. 8.

[8] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and
S. Shenker, “Nox: towards an operating system for networks,” Computer
Communication Review, vol. 38, no. 3, pp. 105–110, 2008.

[9] J. Mccauley, “POX: A Python-based OpenFlow Controller,”
http://www.noxrepo.org/pox/about-pox/. [Online]. Available: http:
//www.noxrepo.org/pox/about-pox/

[10] F. Tomonori, “Introduction to ryu sdn framework,” Open Network-
ing Summit, April 2013, http://osrg.github.io/ryu/slides/ONS2013-april-
ryu-intro.pdf.

[11] B. S. Networks, “Floodlight,” http://www.projectfloodlight.org/floodlight/.
[12] A. Bianco, R. Birke, L. Giraudo, and M. Palacin, “Openflow switch-

ing: Data plane performance,” in Communications (ICC), 2010 IEEE
International Conference on. IEEE, 2010, pp. 1–5.

[13] M. Fernandez, “Evaluating OpenFlow Controller Paradigms,” in ICN
2013, The Twelfth International Conference on Networks, 2013, pp.
151–157.

[14] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, and R. Sher-
wood, “On controller performance in software-defined networks,” in
USENIX Workshop on Hot Topics in Management of Internet, Cloud,
and Enterprise Networks and Services (Hot-ICE), 2012.

[15] S. H. Yeganeh, A. Tootoonchian, and Y. Ganjali, “On scalability
of software-defined networking,” IEEE Communications Magazine,
vol. 51, no. 2, pp. 136–141, 2013.

[16] R. Sherwood, G. Gibby, K.-K. Yapy, G. Appenzellery, M. Casado,
N. McKeown, and G. Parulkary, “Flowvisor: A network virtualization
layer,” OpenFlow, Tech. Rep. OPENFLOW-TR-2009-1, October 2009.

[17] “Openstack,” http://www.openstack.org.
[18] R. T. Fielding, “Architectural styles and the design of network-based

software architectures,” Ph.D. dissertation, University of California,
2000.

[19] OpenStack, “Neutron openstack project,”
http://docs.openstack.org/developer/neutron/.

[20] Nicira Networks, “Open vSwitch: An open virtual switch,”
http://openvswitch.org/.

