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Abstract—This paper presents a novel architecture to manage
identity and access (IAM) in a Multi-tier cloud infrastructure, in
which most services are supported by massive-scale data centres
over the Internet. Multi-tier cloud infrastructure uses tier-based
model from Software Engineering to provide resources in differ-
ent tires. In this paper we focus on design and implementation of a
centralized identity and access management system for the multi-
tier cloud infrastructure. First, we discuss identity and access
management requirements in such an environment and propose
our solution to address these requirements. Next, we discuss
approaches to improve performance of the IAM system and make
it scalable to billions of users. Finally, we present experimental
results based on the current deployment in the SAVI Testbed. We
show that our IAM system outperforms the previously proposed
IAM systems for cloud infrastructure by factor 9 in throughput
when the number of users is small, it handle about 50 times more
requests in peak usage. Because our architecture is a combination
of Green-thread and load balanced process, it uses less systems
resources, and easily scales up to address high number of requests.

I. INTRODUCTION

Cloud computing has promoted the hosting and delivery of
services over the Internet and the movement of computation
and data from terminal devices and local servers to core
data centres due to advantages in flexibility, scalability, and
economic of savings [1]. Most services have been supported
by massive-scale distant datacenters located at sites. How-
ever, some services will require low latency (e.g. alarms in
smart grids, safety applications in transportation, monitoring
in remote health, fire or emergency alarms in smart cities),
the processing of large volumes of local information (e.g.
video capturing in lecture rooms), or high security provided
by intelligent converged network and computing at the edge of
the network, for example in the premises of traditional telecom
service providers.

The Smart Applications on Virtual Infrastructure (SAVI)
project has been established with a focus on future application
platforms designed for applications enablement [2]. As shown
in Figure 1, SAVI considers a multi-tier cloud infrastructure to
include Smart Edges where local players work together with
remote massive-scale data centres to provide better Quality of
Service (QoS) for sensitive applications. SAVI investigates the
hypothesis that all computing and networking resources can
be virtualized and managed using Infrastructure-as-a-Service
(TaaS). The Smart Edge should go beyond conventional cloud
resources to address QoS demanding applications such as
video distribution, fast and secure communication, wireless
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access controls, etc. In other words, the Smart Edge will be
heterogeneous data centres including line rate processors, re-
configurable hardware, graphical processors, specialized hard-
ware accelerators and crucially future highly programmable
networking equipment.
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Fig. 1. Multi-tier cloud infrastructure

The Global Environment for Network Innovations (GENI)
[3], which provides a virtual laboratory for networking and
distributed systems research and education, is another multi-
tier cloud and networking infrastructure but with a different
view. Unlike SAVI which is looking for a unified management
layer, GENI intends to federate a variety of testbeds or resource
providers with different control and management planes. GENI
provides a wrapper in front of a set of testbed suits or
resource aggregators to provide unified APIs for users, while
maintaining their independence. Users can allocate slices in
different testbeds by joining to one of the organizations in
GENI. GENI can be considered as a community cloud.

While the benefits of cloud computing is clear, security is
a severe concern in these infrastructures. Kandukari et al.[4]
considers five cloud security issues that should be included in a
Service Level Agreement. There are the following: privileged
user access, data location, data segregation, data disposal and
investigation and protective monitoring. Privileged user access
ensures only authorized users have access to an organization
data and resources. Therefore, identity and access management
is considered as a security concern in cloud computing. Various
models have been proposed to address identity management
in clouds, such as central IAM, trusted third party, federation
solutions, etc. Most of solutions are mainly focused on feder-
ation of cloud providers, and pay less or no attention to access
management.

In this paper, we propose a new architecture to manage
identity and control access to resources in a multi-tier cloud
infrastructure. First, we discuss system requirements, and then
we propose an architecture to address these requirements. Our
architecture comprises two major components: middleware and
central JAM to manage user and infrastructure related data.
Middleware sits in front of a resource provider and handles
time-consuming decision making such as authentication and



authorization, while the repository handles data manipulation.
We deploy performance enhancing techniques to boost middle-
ware and repository performance while using load balancing
to make it scalable. This architecture has been implemented
on SAVI testbed that spread throughout Canada.

In summary, this paper makes the following contributions:

e  We design a comprehensive architecture for a central-
ized IAM in a multi-tier cloud infrastructure.

e  We propose three performance enhancing techniques
of the IAM for scalability: load balancing, caching,
and middleware.

e  We propose a fine-grained policy-based access control
for trust-relationship management.

e To test our proposed IAM on the Canadian SAVI
Testbed.

e Using the testbed, we have shown that the IAM
outperforms the previously proposed IAM for cloud
infrastructure in throughput and response time.

This paper is organized as follows. Section 2 reviews
various cloud- and testbed-provider IAM systems. Section 3
describes IAM requirements and our design. Section 4 focuses
on scalability issues and our solution approaches. Section 5
shows performance evaluation results for validation. Finally,
we present conclusions and possible future work in Section 6.

II. RELATED WORK

Identity management (IDM) in web services is experienc-
ing a paradigm shift from organization-centric to trusted third
party on the cloud. Third party identity providers allow both
scalability, and flexibility to users and applications over the
Internet. Traditional identity management models are either
user-centric or service-centric. In user-centric models, a user
manages multiple identities through software or a hardware
pluggable authentication device [5]. In service-centric models,
this job is offloaded to service providers which can either
store the credentials centrally or can be federated. These two
approaches are used in the cloud as well. Angin et al. [6]
propose an entity-centric approach for IDM in the cloud which
leverages active bundles to send sensitive data and policy to a
service provider.

There are several solutions for IDM in clouds. Gunjan et al.
[7] compiled a list of available technologies and solutions for
cloud computing, including Primary and Identity Management
for Europe (PRIME), Windows CardSpace, OpenlD, Higgins,
and Liberty Alliance. Academic research has concentrated on
cloud-based IAM security issues. Huang et al.[8] tries to avoid
sending clear text to other cloud providers by designing a PPID
protocol where IDs are divided between services, enabling a
cloud provider to retrieve user information while preserving
a users privacy. Other research works focus on the general
concepts of IDM and federation: Huang et al [9] proposed
an identity federation broker to allow federation of in-cloud
services, external services, and on-premise resources. In [10],
the authors are building a distributed identity management
model for a collection of institutions to collaborate.

ExoGENI is a GENI testbed to build a network of cloud
providers based on OpenStack software. Network campuses
can be served through ORCA [11] control framework by
connecting to network circuit fabrics. EXoGENI IAM uses
libabac to add attribute-based access control to the testbed,
and authorizes entities according to identity, affiliation, and
type of the activity. It also supports delegation in the format
of capability-based access control. EXoGENI uses a PKI
infrastructure to manage identities and authenticate entities.
ExoGENI IAM leverages Shibboleth to to be federated with
other infrastructure and cloud provider [12].

Current approaches to cloud IAM are concentrating on
offering solutions on particular issues such as federation or
finer-grained access control. The lack of a comprehensive
analysis, from conception to physical implementation, to in-
corporate these solutions resulted in impractical and fractured
solutions. Meanwhile, some elements of the identity and access
management problem are specific to advanced cloud platforms
such as SAVI. For example, infrastructure users can acquire
a set of virtual resources to run their applications, or an
application can send requests to resources on behalf of users.
A virtual resource can span multiple providers in different
geographical locations or under another administration. In this
paper we focus on designing and implementing a comprehen-
sive architecture that meets multi-tier cloud requirements such
as SAVL

III. IDENTITY AND ACCESS MANAGEMENT

We present an architecture that improves the security in a
multi-tier cloud infrastructure where resources are typically
engaged by applications on the behalf of users. For this
reason we concentrate on application requirements and we
consider the requirements of a user-centric IDM. The SAVI
IAM adopts IdP/SP model where a central Identity provider
provides information for a service provider. In a multi-tier
cloud orchestration, the resources are the service providers
and the IdP is the SAVI IAM system. The main challenge
in IdP/SP model is scalability and our solution is to extend
the model to incorporate middleware that assume some of the
IAM responsibilities.

A. Requirements and Objectives

There are three categories of requirements for a cloud-
based IAM: 1) authentication and federation, 2) access man-
agement, and 3) manifesting and reporting. When an applica-
tion runs in the cloud, it initially identifies itself to the IAM
to receive a list of available resource. Next, the application
sends its request to acquire a slice of the selected resource. The
behaviour of the applications is audited for future reference or
for rolling back the system to a stable state in case of system
crashes.

Authentication is the process of verifying an entity identity
to ensure that the entity has enough permissions to access
the resource. Authentication is also the primary issue in
federating with other cloud providers. The IAM needs to
support a standard way of authenticating entities, such as the
Security Assertion Markup Language 2 (SAML2), in order
to provide a cross-domain service. However, for the internal
communication, applications may use different authentication



mechanisms to identify themselves to the IAM. In order for the
IAM to support any authentication mechanism, it is necessary
to separate the authentication logic from the credential format.
Strong Authentication is a major security concern for a an
IAM, and so the SAVI TAM must have the ability accept a
combination of various authentication methods.

The second category of requirements deals with access
management. A goal of cloud infrastructures is to provide a
highly-programmable platform, so the use of a simple coarse-
grained access control would be overly constraining to users
and applications, and refrains administrators to implement the
least-privilege and separation-of-duties principle. Furthermore,
since the rate of resource allocation and deallocation can be
very high in an application-oriented infrastructure, the autho-
rization layer should not inflict a considerable performance
overhead on resource providers. The authorization layer must
incorporate the least-privilege and separation of duties design
principles.

The last category is manifesting and reporting. 1AM is
considered as the point of entry for a user, and it should
provide sufficient information about the infrastructure to allow
the user to proceed, such as endpoints to reach resources,
their geographical locations etc. On the other hand, since IAM
middleware is intercepting all requests, it can track and furnish
data for all basic audit requirements, as well as to identify
access violations or attacks, and to quantify risks and threats.

B. Proposed System Design

We have developed an IAM solution for the multi-tier
infrastructure such as SAVI testbed. SAVI Testbed main en-
tities includes a SAVI TB Control Centre, Core Nodes, Edge
Nodes, and a SAVI network. Core and Edge nodes contain
resources that are used for creating applications. The SAVI TB
Control Centre hosts SAVI control and management functions
including resource allocation, clearing house, monitoring and
measurement, and so on. The SAVI IAM system located in
the SAVI Control Centre, and asserts identities about users,
applications, and a threads of execution that can be called an
entity.

We have designed and implemented SAVI IAM to address
the requirements in the previous section. The SAVI IAM is
a central identity manager with distributed middleware based
on IdP/SP model and comprised of 6 basic components:
Manifesting Management, Identity Management, Policy Man-
agement, Token Management, Authentication Management,
and Middleware. Figure 2 illustrates how these components
interacts with each other.

To access a resource, an entity needs the resource URL-
named endpoint. These endpoints, together with associated
resource attributes such as geographical locations, quota, ser-
vice level agreement, service type, etc., are enclosed in a data
structure called an endpoint record. Each endpoint record has
three types of endpoints: Public, Admin, and Internal: Public
for external access to the resource, admin for administrative
tasks bounded to a management network, and internal for inner
components invocations. The list of the endpoint records is
formatted and placed in Service Catalog which enable a user
to choose a resource aligned with the governance, the standards
and the requirements. The list can be updated, retrieved, and

created through the manifesting management component. The
service catalog is divided into regions that represent edge nodes
in SAVI. Each edge node is independent of other nodes in
terms of provisioned resources.
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Fig. 2. TAM Architecture

The second component is Identity Management which is
used to store, and manipulate users, projects, and associated
attributes such as role. Likewise, the policy management
component stores access management policies, and through it,
users can perform CRUD (Create, Retrieve, Update, Delete)
operations on a policy. During the authentication process, the
SAVI TAM returns a security token as part of the security
context. The Token Management generates a token for the
authentication service. It supports the following token format:
Universally Unique Identifier (UUID) and Public Key Infras-
tructure (PKI). The UUID is a series of letters and numbers to
maintain session, and the middleware needs IAM to validate
the UUID token. But, the IAM PKI generates a certificate
for the entity and signs it with its Public Key, therefore, the
middleware does not invoke IAM to validate the token. The
token manager also provides APIs to retrieve token-associated
data such as a username, project etc, which is used by other
APIs to obtain security context.

Token Management in concert with the authentication
module are the cornerstone of the authentication process. As
shown in Figure 2, the authentication module supports multiple
authentication mechanisms. It fetches a users attributes and
project information from the identity module to validate a
users credential. Separating logic from storage enables IAM to
support different authentication methods without any mandates
on the credential storage layer, and helps to create a flex-
ible authentication module. The IAM authentication module
determines the method of authentication in runtime. In each
request, there is an identity-type field that defines the method
to validate the credential. Users can choose different methods
of authentication (e.g. Public Key, Password, OAUTH, and
SAML2.0), and correspondingly, the token format of can be
different from a request to another request.

Middleware resides in front of a resource provider to cap-



ture requests. After a request identity and access privilege are
confirmed, the request is handed over to the service provider;
otherwise, the it is directly rejected. As shown in Figure 3, our
IAM has two middlewares: authentication and authorization.
Authentication middleware validates the security token, and
authorization checks the requested action against the policy.
To improve performance, we are maintaining authentication in
the IAM while we delegate authorization to a resource provider
and transfer the policy to it.
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Fig. 3. 1AM Middleware Architecture

C. SAVI Access Control

The access control model determines who can access to
what resources on the cloud infrastructure. Access control is a
collection of policies and components used to implement the
access control model in the cloud. SAVI enables administrators
to define access control policies and attributes in a com-
pletely isolated environment to provide flexible, adaptable, and
fine-grained access to their users and applications. Isolation
provides a way to address the problem of containment for
compromised applications [13] and has been used before to
have different permissions for the same role in Role-based
access control [14]. Isolation allows administrators to define
authorization parameters (e.g. role) in an isolation scope. The
isolation scope is the granularity of isolation and can be a
project, an administrative domain, or a physical node. As
shown in Figure 3, When the user is authenticated, along with
his credentials, the authorization middleware task his attributes
to create the security context. It also synchronizes the local
copy of policies with the SAVI TAM in the context of an
isolation scope.

As illustrated in Figure 4, the authorization middleware
comprises four essential components: Policy Enforcement
Point (PEP), Policy Decision Point (PDP), Attribute Assertion,
and Policy Management Point in the IAM. When the PEP
captures a request, it forwards the request to PDP to perform
authorization. The PDP retrieves the security context from
the authentication middleware and resource attributes from
the Attribute Assertion module. It stores a local copy of the
access control policy, and updates it periodically with IAM
over Policy management component.

Bear technology-independence in mind, PDP is able to
use different access control models to authorize the request.
We have implemented two access control models in SAVI so
far: Role-based Access Control (RBAC) and Attribute-based
Access Control (ABAC).

1) Role-Based Access Control: Role-based Access Con-
trol(RBAC) [15] is very useful model for cloud computing.
Although its benefits is fundamentally limited to entity at-
tributes, it simplifies the management of permissions. The
main concept of RBAC is the granting of permissions to users
according to the associated roles. Therefore, roles is a layer
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Fig. 4. Authorization workflow

of abstraction between users and permissions. Administrators
assign roles to users, and roles incorporate new permissions
as applications and systems join to them. There are three
operations in RBAC: role assignment, request authorization,
and role-permission association.

SAVI has implemented RBAC96 [16] which is Role-based
access control with constraints. SAVI RBAC is implemented
at API level. The required attributes to complete authorization
in SAVI RBAC are the list of user roles, the user project,
and the status of his identity. The authorization is done by
checking the attributes against the policy which maintains the
list of authorized roles with their domain names or any other
isolation scope.

There are three drawbacks with RBAC: 1) it needs a
substantial effort to define roles and assign them to users
2) an administrator needs to introduce a new role to cover
discrepancies, leading to role explosion problem[17] 3) RBAC
is not suitable for a cross-domain access management because
reaching to agreement that what permissions are associated
with a role is difficult [18]. Due to these barriers and to provide
a finer level of access control, many service-oriented platforms
have shifted to Attribute Based Access control.

2) Attribute-Based Access Control: To provide fine-grained
access control, the logic needs to be more discriminating,
and finer-grained in terms of what should be considered for
a request to move forward. Instead of considering just one
attribute (Role), several attributes can be taken into account
(e.g. project, risk level, resource attributes). Attribute Based
Access control (ABAC) [19] takes three categories of attributes
into account: subject attributes (e.g. role, project), resource
attributes (e.g. owner of a file), and environmental attributes
(e.g. risk level). The relationship of these attributes is expressed
in a predefined grammar in policy. To be backward-compatible,
we have used the same notations as in RBAC.

To keep the attribute definition flexible, the IAM enables
each component to defines its own attribute inside a data
structure named resource map. The authorization middleware
recognizes an attribute as long as it knows how to fetch
and check it against the policy. A resource map is filled by
Attribute Assertion module in which each resource defines how
to provision an attribute. The attribute assertion module varies
from a resource to another one, and is invoked by authorization
middleware during access time. The authorization middleware
calls a checker function to validate an attribute. A checker
function directs the middleware how to interpret an attribute.



The middleware gives value of attribute along with the policy
as an argument to the checker, and it returns a Boolean value
to indicate approval or denial.

The middleware can apply policies in two ways: to protect
a function or to filter the output of a function. When a policy
wants to protect a function, it intercepts a request before
calling the function, and if the request is authorized it goes
through, which can be translated to a binary protection either
accepts or denies it. While in filtering, policy is used to remove
unauthorized output of a function. Parsing the policy is a time-
consuming and complex job. To parse the policy, we use a
greedy reduction algorithm to reduce a sequence of tokens
into a single terminal, the value of which will be the root of
the decision making tree. We divide a policy into tokens, and
map each token to a check function.

D. Delegation and Trust

Delegation of duty allows to perform a task when the
initially-assigned user is not available to complete the task.
It does so by granting an entity (user or process) an ability to
perform an action temporarily. Delegation comes handy when
an administrator wants to authorize an application or user at
setup time to perform some errands in the future, long after a
token is expired. There are two types of delegation: Dynamic
Delegation of Authority (DelAuth) and Dynamic Delegation of
Action (DelAct). DelAuth grants all or part of a user authority
(delegator) to another user (delegatee) to do something. DelAct
grants a user the permission because the request is part of a
process that is authorized. There are three types of situation
where a delegation is required: backup of role, decentralization
of authority, and collaboration of work. Failover application
is a backup role to recover the system on the behalf of
administrator when he is not available. Decentralization of
authority helps to distribute functions in a group to implement
the separation-of-duties principle, and collaboration of work
occurs when two parties work on the same resource for a
period of time.

The SAVI IAM supports Permission-based Delegation
Mode (PBDM) [20] which is a model for delegation of
authority in RBAC. It is based on RBAC96 and a user can
delegate a privilege by delegating a role associated with the
permission to one or more other users and confining that
permission to a project. There are two types of role in SAVI:
regular role and delegation role. When a user wants to delegate
arole, it creates a delegation role and assigns it to another user.
In SAVI, the unit of delegation is permission that corresponds
to a delegation role. Users can also assigns their regular role
that contains a set of permissions. By default, administrators
can delegate roles and permission; however, members need
explicit authorization to delegate their roles. Delegation roles
are created by an administrator, therefore, an administrator
can control the permission flow by mapping permissions to
delegations roles.

IV. SCALABILITY AND PERFORMANCE

A multi-tier cloud infrastructure needs to scale to billions
of transactions for millions of users and applications identity.
Therefore, a centralized identity manager may be the bottle-
neck of a multi-tier cloud computing because if it slows down,

the interaction with whole process slows down. An IAM in
cloud infrastructure should dynamically scale up and down, so
no entity should hoard resources in peak hours. The features
introduced in Section 3 slow down the handling requests, so
we need to introduce performance enhancing techniques to
optimize operations and scalability mechanisms to keep the
performance at the same level during the peak usage.

To maintain the system performance, we distributed deci-
sion making between the central IAM and the middleware in
the way that the central IAM carries out authentication, while
authorization is in middleware on the resource side. To make
a system scalable, we need to consider points of failure. A
slow central IAM can inflict delays on operations; therefore,
we must optimize IAM throughput in the first place, and avoid
redundant calls to it at the second step. Token authentication
is the most frequent operation, and it is followed closely by
credential authentication. Policy is a fairly rare operation, and
it is placed the bottom of the list. User-, tenant- and role-
membership occur at the same rate but significantly lower than
the authentication process. Finally authorization is performed
by middleware on a resource, and therefore it is not a matter
of discussion in the IAM.

The performance of resource provider is heavily dependent
on the performance of the central IAM due to authentication.
Therefore, two strategies should be followed to boost this
performance:

e  Optimizing response time of the IAM

e  Decreasing the number of calls to the [AM

To optimize response time, we identified time consuming
activities in the IAM in order to produce the response. The
response is composed of two pieces of information: user
security context and service catalog. In order to return a
response: 1. Credential info should be retrieved; 2. Token
and service catalog should be formatted. The service catalog
is fairly huge chunk of data because it contains the lists all
available resources and associated attributes on the cloud, and
since it is depends on user info(e.g. Project id), it has to be
formatted for each user separately. Reducing the number of
querying and formatting service catalog can decrease response
time too.

To decrease the number of calls to IAM we have to
store some data in the middleware. An examination of the
authentication middleware workflow shows that we do not
need to authenticate each token for individual requests as this
token is valid for a period of time. Furthermore, instead of
validating one token in each call, we need to validate a bunch
of tokens. Therefore, the middleware must be cache coherent
which means it should perform the authentication locally while
not violating the semantics of the operation. Along these
strategies, we leverage caching, offline token validation to
boost performance. Load balancing over Green-Threads is our
scalability-enhancing practice that enable IAM to address large
number of requests.

A. Caching Layer

Caching is a layer in IAM to prevent redundant access to
the database, and to avoid unnecessary data formatting. When a
request needs data from the IAM, the IAM queries the database



to fetch, after formatting the data, the IAM sends it back to the
user in the response payload. Fetching and formatting are two
processing-intensive jobs when they come to handling millions
of requests and large amounts of data. The Service Catalog
is the largest chunk of data that IAM returns to a user. The
Service Catalog is different for users and projects, therefore we
cannot cache data at the datastore, and formating the service
catalog takes more time than fetching it. We cache the data
transparently after formation. However, transparency can result
in inconsistency in data because other functions modify this
data as well.

Our layer caches output of a function that queries and
formats the data from the datastore, caching layer puts the
output of each function in a distinct namespace to keep track of
cached data. It provides some handlers to refresh cached data
to overcome inconsistency. Other components invoke these
handler to indicate the caching layer that a namespace data
is not valid anymore.

B. Middleware

To validate tokens from regular entities, the middleware
should connect to IAM and get a privileged token to verify the
users token. This job costs three operations for the middleware.
As tokens are valid for specific duration, the middleware can
cache a token until it is expired or revoked by the IAM. When
a request comes in, the middleware tries to find the token in
the local cache, if the token is found, the middleware lets the
request go through; otherwise, it has to be validated by the
IAM. After validation, the token is cached in the local token
lists. The middleware periodically updates the list of revoked
tokens to be consistent with the IAM. Local caching reduces
the overhead of connection establishment,

The performance overhead of internal authentication is
huge during peak usage because resources need to call other
resource providers to perform their jobs in multi-tier cloud
computing infrastructure. Computation needs to connect to a
networking component to create a network, and as result, it
inflicts a huge number of unnecessary authentication on the
system, and slows the system down enormously. To overcome
this issue, we have introduced the concept of trusted parties
where agents or trusted components are introduced to middle-
ware of a resource, and they get through without validation.
A trusted party is identified by its source IP address and API
keys where are given as configuration manager to the resource.
We refrain from performing authentication and authorization
on a trusted party request to increase the performance.

C. Off-line token Validation

When the IAM issues a PKI token, it signs the token with
its Public key. Each PKI token has a expiration date to indicates
until when it is valid. The middleware does not need the IAM
to verify a PKI token. Therefore, it can validated without
IAM as well. The PKI tokens are issued to components or
application that need to use a resource for a certain period of
time. As the IAM can not revoke the PKI tokens, it does not
issue them for users.

D. Load balancing

The using of load balancer is twofold. We keep the
performance at the same level when the number of requests
increased. In case of crash, the load balancer can as a failover
mechanism. As the IAM instances is running in a separate
processes and memory space, they can share the status of
requests with each other. As a result, entities may be constantly
receiving Unauthorized error when a process cannot find the
state of the token request. To deal with this issue, IAM
places tokens and security data on memcache under the same
namespace. Namespace is caching space that the caching layer
dedicate to a piece of data. The caching layer keeps track of
cached data in the namespace. A caching namespace has three
elements: name, list of keys, and cached blobs. For example,
the namespace name for caching service catalog is “catalog”,
and list of keys is stored in the caching layer to facilitate the
cached blob revocation. A caching blob is composed of access
key and cached value. Because the caching layer is shared
between the independent processes, if the processes keeps the
security information in the caching layer, different instances
can access to the security information by leveraging namespace
and encryption parameters used to secure cached data. A load
balancer uniformly distributes requests among instances, and
also creates more instances when the number of requests for
each instance passes a certain thresholds. As a result, the IAM
system is able to dynamically scale up and down by increasing
the number of backend processes.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our IAM
using the SAVI Testbed [21]. We first describe our experimen-
tal setup for the evaluation, and then present our experimental
results.

A. Experimental Setup

SAVI TAM is built on top of Openstack Keystone V2.0
[22]. Keystone is Openstack identity manager, and is com-
posed of three basic components: Catalog, Identity, and Token.
Service catalog stores a list of endpoints, and identity backend
verifies tokens and credentials and handle CRUD operations
on users metadata, token backend generates tokens. Keystone
v2.0 does not support policy CRUD operations and PKI at
the moment. Keystone supports a well-defined format for
credentials, and can generate tokens in OpenStack and EC2
format. Keystone has two kinds of APIs which serve different
types of users: Admin API to serve administrative operations
and Public API for regular users. It has an authentication
middleware that sits on in the front line of each resource on
the cloud, this middleware authenticate users tokens through
Keystone.

To carry out load testing on SAVI IAM, we utilized
Apache JMeter that is a Java application used to carry out
performance analysis on a variety of applications including:
HTTP(s), SOAP, IMS, JDBC, and LDAP etc. It performs load
testing and robustness testing to measure the behavior of an
application under different load types [23].

To run these SAVI IAM, we used a xeon machine with 12
processors and 32 GB memory on SAVI testbed. To evaluate
the performance, we conducted distributed testing on IAM



because a single client machine is unable, performance-wise,
to simulate enough users to stress IAM. Therefore a master
machine can control multiple, remote JMeter engines from a
single JMeter GUI client. Each engine is an xeon system with
4 processors 4 GB memory on SAVI. The master is a large
virtual machine with 4 processors and 8 GB memory.

B. Experimental Evaluation

In this section, we present the performance evaluation
results and we compare the SAVI IAM performance with the
baseline OpenStack Keystone v2.0. The performance compari-
son is to evaluate the throughput and response time of the SAVI
IAM over Openstack Keystone. In each test experiment, we
measure the following parameters for an individual credential
authentication:

e  Throughput: the number of requests per second the
IAM or middleware has processed

e Average Response Time: the total running time di-
vided by the number of successful requests sent to
the IAM or Middleware

The evaluations are done on three different systems: 1) The
baseline system which is Keystone v2.0. 2) A single instance
of SAVI IAM with Caching-Layer enabled 3) A Multi-instance
full featured SAVI IAM (Caching-Layer enabled) .

For all experiments, we assumed 300 projects with 10
regions (SAVI nodes), while each region has 10 endpoints
which can be translated to total of 100 endpoints. The system
performance is measured while increasing the number of
concurrent fast clients from one client to 256 clients. Fast
clients are dumb processes that do not process response, and
continuously send requests to the SAVI TAM.

Figure 5 shows the evaluation results of the baseline Key-
stone v2.0 system. As it can be seen, the baseline system per-
formance degrades significantly as number of users increases.
This can be observed by rapid degradation of throughput
measured in requests served per second (right side y-axis) and
high increase in response time measured in milliseconds (left-
side x-axis). When the number of concurrent fast clients passes
128, the number of successful requests are decreased due to
timeout in serving them.

Figure 6 shows the performance of one instance of SAVI
IAM with Caching-Layer enabled. As described before, The
Caching Layer performs transparent caching of the data to put
in the response of a request.

As it can be seen, the throughput of one SAVI IAM
instance with Caching-Layer enabled is higher than that of
Keystone v2.0 when number of concurrent users are high.
When the number of the requests are low, Keystone v2.0
slightly outperforms SAVI IAM since SAVI IAM places a ver-
sion of response in cache as well; however, when the number
of requests increases and most of requests are repeating, the
caching mechanism boosts system throughput because there
is no need to query the database and format the data again.
For requests in the range up to 64, the throughput of the SAVI
IAM system is 4 times higher than that of the Keystone v2.0. In
terms of response time, with the increase of requests, response
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time for the SAVI IAM is lower because fetching from cache
is faster than querying the storage and formatting the data.

Figure 7 shows the performance of the full featured SAVI
IAM with load balancer and 10 instances of SAVI IAM
processes including the Caching Layer. As it can be seen,
SAVI IAM significantly outperforms baseline in terms of both
throughput and response time especially in high loads. Also a
comparison of Figures 6 and 7 shows that the throughput is
increased by a factor of 9 when 10 IAM instances are used.
Moreover, the service time is decreased by a factor of 10 at
the higher request rates.

Lastly, in Figure 8(a,b), we present the throughput and
average response time for all three evaluated systems in one
graph for better performance comparisons. This figure clearly
shows that SAVI TAM is able to handle high request rates
while keeping low response time and is able to scale up as
needed to handle higher number of concurrent users.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have introduced a novel architecture
for a cloud-based IAM. Our architecture uses a central IAM
and decentralized middleware to carry out IAM duties. The
main features in this architecture are scalability, adaptability in
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access control by implementing RBAC and ABAC, and exten-
sibility to future technologies. The SAVI IAM introduces great
flexibility in selecting authentication method by designing a
common Pluggable Authentication module. It also introduces
an open platform for authorization and delegation that is an
essential requirement for an application-centric infrastructure.
To make the IAM performant and scalable, we leveraged
efficiency of Green-thread and scalability of load balancing.

Our experiment shows SAVI IAM improves the throughput
of Openstack Keystone by 10 times in off-peak usage, and
50 times in peak usage. In the future, we plan to study
federation to enable bursting to other cloud providers. We are
also interested in including new authentication technologies
such as QR-Code and mobile device into SAVI IAM.
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