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Abstract—We study the resource allocation problem in an OFDMA based cooperative cognitive radio network, where secondary users
relay data for primary users in order to gain access to the spectrum. In light of user and channel diversity, we first propose FLEC, a
novel flexible channel cooperation scheme. It allows secondary users to freely optimize the use of channels for transmitting primary
data along with their own, in order to maximize performance. Further, we formulate a unifying optimization framework based on Nash
bargaining solutions to fairly and efficiently allocate resources between primary and secondary networks, in both decentralized and
centralized settings. We present an optimal distributed algorithm and a sub-optimal centralized heuristic, and verify their effectiveness
via realistic simulations. Under the same framework, we also study conventional identical channel cooperation as the performance
benchmark, and propose algorithms to solve the corresponding optimization problems.

Index Terms—Cognitive radio, cooperative communication, resource allocation, Nash bargaining solutions, OFDMA.
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1 INTRODUCTION that data on one channel has to be relayed on exactly the
same channel, which may not be amenable to relaying from

C_ognltlve radio, with the ability tq flexibly adapt |_ts trans a performance perspective. Meanwhile, some other channel
sion parameters, has been considered a revolutionarydechn . . -
. - .~ "may have abundant capacity to incorporate additional data

ogy to open up dynamic access to the under-utilized wireles . . .
Wwith little cost. In other words, cooperation using the same

51 M . .
spectrum [?], [[3]. Recently, a new paradigm where PNMalY, annel misses the bulk of PU-SU cooperation opportunities
users (PUs) can leverage secondary users (SUs) for their qwn

transmissions, termedooperative cognitive radio networks,_> unnecessarily limiting the space of SU resource allocati
y P 9 to only the temporal dimension.

(CCRN), is advocated [4]/.[5]. In CCRN, SUs cooperatively our first tribution in thi _ desian f
relay data for PUs in order to access the spectrum. Assum- ur first contribution 1n this _paper 1S a new design for

ing that SUs have better channel conditions to the primag?oDer?t;?rL ag_c&ng Sﬂt}Jst ananUs, }f;?]nfdn File;abk? rChanrneI
receiver, cooperative relaying can greatly increase thegmy ooperation ( ) that opens up a ensions of resurc

transmission rate. Meanwhile, SUs also gain opportunttes g!locaﬂ_on for ?Ubsl. I.t takeI?_ aﬁvantallge tOf cEang]el and d user
access the spectrum, resulting in a “win-win” situation. iversities available in multi-channel networks [8]. [$jn

. : allows SUs to freelyoptimizeits use of resources, including
A single channel network with only one PU has beeE‘hannels and time slots leased by PUs, as well as power, for
considered in[[4],[I5]. The PU leases its channel to SUs for a y ' b '

. N . . relaying primary data along with its own data, as long as all
fraction of time in exchange for cooperative transmisstlds . : . .
. - ! . the primary data it received can be delivered.
allocate a portion out of their time fraction for relayingmary The basic id ¢ FLEC K h . 1 W
data, and the rest for their own traffic. A Stackelberg game is % atsr:c Idea I(')f' d worhs ast_s own in ”@” ' d'. id %
formulated to determine the optimal time sharing strategy. consider the simplilied case where me 1S equally divide

. . . . - to two slots among cooperating ugkrdUs transmit in
In this paper, we investigate cooperative cognitive rad| . o
pap 9 P 9 tgle first slot to SUs, and SUs transmit in the second to the

networks from a new perspective. We consider multi-channel. . ) )
Persp rimary base station (BS) and to their own access point (AP).

cellular networks based on OFDMA, e.g. IEEE 802.16 [ SU strategicall timi " fthe | d
for the primary network, with multiple SUs assisting mukip strategically oplimizes 1S Use ot the leased resources
For example, it can use subchannel 1 solely for relaying data

PUs on the uplink. Multi-channel networks impose unique
challenges of realizing the cooperative paradigm, as wetear aggregated from both subchannel 1 and 2, and use subchannel

below along with our original contributions. 2 soIer_for sending its own data as in F: .1. The intuition
: ) . is that, if subchannel 1 has superior conditions on the SU-
First, we observe that conventional user cooperation p

meated through the literature [7] becomes inefficient whien ?S link but poor conditions on the SU-AP link, it is much

. . o more efficient using subchannel 1 to relay data from both
rectly applied to multi-channel CCRN. It implicitly posaies subchannels. Such chanr@vappingor shuffling results in
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March 2010 [1].
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1. Practical justifications for this simplification are asldals. Due to
channel diversity, the optimal time sharing strategy is adersibly different
across the channels for a given pair of PU-SU. From a systaspeetive,
it becomes difficult to structure the uplink bursts in the frambecause
transmissions on some subchannels will finish earlier thasetten other
subchannels.



boosted SU throughput, as well as larger relay capacity fhr Ptroduced above. In the decentralized case, we wish to deeelo
since the overall spectral efficiency is improved. The gpéctdistributed algorithm that can be performed by users indepe
efficiency gain can in turn be translated into more coopenati dently with local information only. We tackle this using aadu
opportunities, as well as increased network capacity attérbe decomposition technique to transform the global optinnirat

performance. into many per-subchannel problems that can be solved by the
_ _ respective PUs distributively and optimally. To account fo
cabohamer 1 Conventional cooperation SUs’ utility, we rely on the subgradient methdd [12] to allow

subchanmel 2 BS PUI-SU_ [ SU-BS[SU-AP . PUs to bz_irgain With neighboring SUs autonomously to_arrive
m: PU 1's data 2 FUZS0|SUBS|/SUAR at the 0pt|mfallsolut|on.for the per-subchannel problemthe
[: PU 2's data é ininiuininis Salainieiaiele > Nash bargaining solution.
A SU's data =T f"AP FLEC In the centralized case, cooperation opportunities aresto b
- \J ’ SIS D S R carefully invented and engineered, rather than distrieliti
= y ==/ w5 [® B0 SUAP harvested. We identify the inefficiency of subgradient rodth
PilL_“J/1 su \Fiﬁz o ;s_t ;I(;t_ T ;n_d_s;)t_ - in this problem, design a three-step heuristic via a decogpl
approach, and prove the approximation ratio for the deealipl
subchannel assignment algorithm. Both algorithms arelyigh
Fig. 1. The motivating scenario for Flexible Channel efficient in that they can meet typical scheduling deadlioies

Cooperation (FLEC). 5-10 ms|[6] in OFDMA systems. In addition, we extend our

The preceding description assumes a decentralized settirignework to consider resource allocation with convergion
where the primary and secondary networks are independedéntical channel cooperation to complete the analysisisTh
Subchannels are assigned to PUs by the primarga BBori to we believe our work sheds light on the design and implemen-
SU cooperation, and only those assigned to the helped PUstat®n of OFDMA based cooperative cognitive radio networks
leased to the respective helping SUs. In a centralizedhgetti The remainder of this paper is structured as follows. Bec. 2
where SU cooperation becomes an integral part of the resourtroduces our system models and the concepts of NBS. In
allocation performed by the primary BS, it becomes possib&ec[8 we formulate the resource allocation problem in decen
to assign any subchannel to a helping SU, to further improtralized setting and present optimal distributed algonghto
the performance. We also consider the centralized FLEC snlve it. In Sec[4, we consider the centralized version ef th
our paper, which turns out to be more difficult. problem and propose practical algorithms with performance

The secondchallenge in multi-channel CCRN is how toguarantees. We study the conventional identical chanrag-co
schedule the transmissions and allocate resources, im firdeeration in Sed.]5. We conduct extensive simulations to yerif
maximize performance gains while ensuring fairness amongr algorithms in Se€]6 and summarize related work inSec. 7.
all users. A SU may assist several PUs (as in Eig. 1) simWe finally give concluding remarks in Sdd. 8.
taneously while a PU may also pair up with several SUs,
complicating the resource allocation problem. Moreover, i AN OPTIMIZATION FRAMEWORK
reality, PUs and SUs are selfish in maximizing their owaae Svstem Model
utility. PUs compete among themselves when one SU resi % ystem Mode
in a suitable position to relay for all of them; likewise SUVe start by introducing the system model. We consider the
compete among themselves if one channel has good conditighYnk of a single-cell OFDMA network. We do not consider
for all of them. Our main objective in this paper, thereforé?n ad-hoc network where coordination between PUs and SUs,
is to developefficientyet fair resource allocation algorithmsand synchronization for effective cooperative commurmeest
for FLEC in multi-channel networks, which has not beeare difficult to achieve especially with multiple PUs. Thasin
addressed yet. line with previous work on cooperative diversity [7], [1§5],

To this end, oursecondcontribution is a novel unifying and on cooperative cognitive radio networks [4], [S]./[16]
optimization framework that jointly considers relay andbsu We do not model the inter-cell interference due to fre-
channel assignment, relay strategy optimization, and powRJ€ncy reuse. Inter-cell interference significantly adzshe
control, based on the concept of Nash bargaining [10]. P@8mplexity of the optimization problem, and shall be dealt
and SUs agree to jointly optimize a social cost functiofVith as a separate issue on its own right/[17]. This simplified
known as the Nash product, which is essentially the proddgterference model is also commonly adopted in related work
of utility functions of the cooperating PUs and SUs. Thél., [B], [13], [14], [18], [19]. The throughput of uplink
solution concept, known as the Nash bargaining solutidinsmission is typically limited due to the power consttai
(NBS), is a unique Nash equilibrium point that is guarantetf PUs. Thus it is better suited to employ cooperation.
to provide Pareto efficiency with NBS fairness among PUs A number of SUs are located in the cell and perform coop-
and SUs, which is a generalized proportional fairness notigrative transmission for PUs to access the primary spectrum
[L1]. Therefore, gains from cooperation to individual Puiane assume that PUs and SUs have infinite backlogged data
SU are allocatedproportionally according to their channel to send and the OFDM frames are synchronized. Cooperative

conditions, i.e. their contributions to the social welfaain. , , _
2. Although [4] considers an ad-hoc secondary network, itdehoonsists

These properties make NBS favorable in our problem. of only one PU who effectively coordinates the time sharinghef spectrum
We consider both decentralized and centralized FLEC as ifith SUs and the cooperative transmission.



transmissions take place on an OFDM subchannel basis, ama time sharing manner. W.L.O.G., lef € [0, 1] denote its
transmissions in different subchannels do not interferth wirelay time sharing strategy. Thers throughput for relay and
each other. Decode-and-forward multi-hopping [7] is usdts own transmission is as follows, respectively:

when SUs relay primary data. Note that our results are ngadil

1—af
applicable when other relaying scheme is used. Moreover, R p= L log (1 +2p§g§rjp),
higher rates are achievable with more sophisticated cod- of
ing/decoding schemes, e.g. maximum ratio combining based R; = 77 log (1 + 2p§rgj) ,Vj € Ns,ce K. 3)

on the signals received in both slots at the destinatione@us ] ] o
of multi-hopping) [7]. Here we focus on decode-and-forwarblote that forj = N + 1, i.e. direct transmission for PU,
multi-hopping only for simplicity of presentation. Our dysis ©Obviously we have

and glgorithms are readily' applicable to scenarios witleoth RS,y p =R =0,Yj € Ns,ce k. ()
relaying and coding/decoding schemes. ’

We model the fading environment by large scale path lossIn cases when other relaying and coding schemes are used,
and shadowing, along with small scale frequency-selectifer instance amplify-and-forward or compress-and-fodvar
Rayleigh fading. The coherence bandwidth is in the order wfth maximum ratio combining, we only need to change the
the width of a few subchannels so that adjacent subchanrié®ughput expression§l(3), and our results in this paper ar
have similar channel conditions. Fading between subchanneeadily applicable. This is left as future work.
in different frames is independent, and remains stablenduri  With conventional cooperations ; = R ,, holds for any
each frame. We assume techniques for channel estimation afRU i leases to SY. With FLEC, this does not have to hold
employed and full channel side-information (CSI) is avalda for every leased subchannel. The only requirement is that SU
which makes the optimization possible. Such assumptionshould deliver all data from the cooperating PUs, i.e. d tota
about the fading environment and CSI are commonly used fimsv conservation requirement as follows:
in [13], [14], [18], [19]. Noises are modeled as i.i.d. cilaty . . .
symmetric complex Gaussian nois@s/ (0, NgW). Z Z Rij < Z Rj p,Vj € Ns. ®)

There are K subchannels,Np primary users andNg o€k ieNp cek
secondary users in the network. Lat be the total number
of users, i.e.N = Np + Ng. Let K = {1,2,...,K} be 2.2 Basics of Nash bargaining solutions
the set of subchannelsVr = {1,2,...,Np} the set of
PUs, Ns = {Np + 1,Np + 2,...,N} the set of SUs,
and ' = Np U N5 the entire set of users. To denote th
possibility of direct transmission, i.e. not cooperatingthw

any SU, we denote a void SU as usdf + 1, and let including PUs and SUs. Lef be a closed and convex subset

+ _
Ng = ANp+1,Np +2,...,N + 1} be the extended Setof N to represent the set of feasible payoff allocations that
of SUs. One subchannel can only be allocated to one PU, aq . ; .
ayers can get if they all work together. L™ be the min-

can only be leased to one SU. b i .
For a given PUi € Ap, if subchannele € K with imal payoff that then-th player would expect; otherwise, he

bandwidthWW and complex channel gaih{ is allocated for will not cooperate. SUpposgl,, € S|k, > Ry™,Vn € N}

: i : . is a nonempty bounded set. DefiRe"® = (R, ..., Ry™),
direct transmission, the achievable throughput is: then the pair (S, R™n) is called a N-person bargaining

Rf ny1 = Wlog (1 +pigy),Ve € K,i € Np, (1) problem.

Within the feasible sef, we first define the notion of Pareto
. |hg|? optimqli_ty as a selecti(_)n criterion in a fcypicgl game settin
9; = TN Definition 1: The point(Ry,..., Ry) is said to bePareto

optimalif and only if there is no other allocatioR!, such that
As mentioned, the subscrigtV + 1) is used to denote the R’ > R,.Yn € N, andR’, > R,,3n € N, i.e. there exists
direct transmission modé: is the coding gap to capacity andnq other allocation that leads to superior performancedores
p; denotes the allocated power. Without loss of generality yser without inferior performance for some other user.
equals 1 in the subsequent analysis. The question that arises is: at which of infinitely many
If PU i € Np decided to lease € K to SUj € Ns  pareto optimal points should we operate the system? A possi-

for cooperative transmission, then in the first time slog thye further criterion is the fairness of resource sharingthis
achievable throughput on PU-SU link is paper, we use the NBS fairness axioms from game theory.

1 : . . Definition 2: ¥ is a NBS, i.e. T = ¢(S,R™"), if the
c — - €aC . ) , o ’
Rij = 2 log (1 +2pig;;) Vi € Np.j € Ns,c € K, (2) following axioms are satisfied [10]:

since the effective power and throughput should take intol) Individual Rationality R,, > R™® Vn € N/

account the two-slot structure of cooperative transmisdtor 2) Feasibility T € S

SU j in the second time slot, under FLEC, it can freely decide 3) Pareto Optimality

whether to use solely for relay, or solely for its own data. For 4) Independence of Irrelevant Alternativds ¥ € S’ C S,
conventional cooperation, it usesjointly for both purposes F = ¢(S,R™1), thent = ¢(S’, R™)

We present the salient concepts and results from Nash bar-
aining solutions in this section, which are used in the skqu
or details we refer readers to [10].
The basic setting is as follows: L&t be the set of players,

where




5) Independence of Linear Transformation§or any scheduling and resource allocation problem, it has to be

linear scale transformation), ¥(¢(S’,R™")) = solved in each scheduling epoch because channel conditions

d(Y(8S), P (R™InY). change over time. Therefore it is important to identify the
6) Symmetry If S is invariant under all exchanges ofinstantaneous objective function we optimize in each epoch

players, thenp;(S, R™") = ¢,/ (S, R™)Vi, 4'. in order to arrive at long-term utility optimum. From the

Axioms 4-6 are called axioms of fairness. The irrelevaseminal paper of [21], it has been shown that maximizing
alternative axiom asserts that eliminating the feasibletems the aggregate marginal utility> U’(R,,) - R,, at each epoch
that would not have been chosen should not affect the NBRactly achieves long-term utility maximization. Thenefp
solution. Axiom 5 asserts that the bargaining solution Eesc separating the terms for PUs and SUs, the basic resource
invariant. The symmetry axiom asserts that if the feasib#location framework for OFDMA cooperative cognitive radi
ranges for all players are completely symmetric, then alsis networks at each epoch is:

have the same solution. R. _ Rmin R.
The following theorem shows that there is exactly one NBS max Y- ﬁ + > R—J (8)
that satisfies the above axioms. ReES.RzRmM N, 14— 1 jeNs 11

Theorem 1:There is a unique solution functief(S, R™")

e ; A i Ri,R;, R n he instantan n ver
that satisfies all axioms iPefinition[2 such that[[1D] i, R, ;, 1;  denote the instantaneous  and average

throughput for PUi and SU; at current epoch, respectively.

H(S,R™") €  argmax H (R, — R™").  (6) Both R; and R; can be readily obtained by applying the ex-
ReS,R-R™in = ponential moving averaging techniqug™, R;™™ are the in-

stantaneous and average throughput requirement resggctiv

. ; . ~ which can be obtained by running a multi-user scheduling
falrrk;Iess r;ﬂﬂfefs topp:Jroporltllonal flalrgess [18]. Notg thaittjrrl algorithm at each epoch_[20], and using exponential moving
problem, R™" for PUs will surely be non-zero since eyaveraging technique.

get positive throughput if not cooperate, while that for SUs Note that without considering long-term performance, the

will be zero. Therefore NBS fairness here is different thagptimization must guarantee faimess in each epoch. How-
proportional fairness. In general, the intuitive idea iatthfter ever. when a time window is used. the fairness requi.rement

the minimal requirements are met for all users, the rest ef tp5 relaxed to the time window length. This provides more
resources are allocatgutoportionally to users according to flexibility to improve the spectral efficiency, by making the

their conditions. current resource allocation related to previous ones. &a t
R,, — R™" in the denominator of{8) serves as a weight factor
_ } ~ to adjust the priority of usen. If the user has an unfairly
For our problem, we wish to considésng-term NBS fair- |5rge throughput gain from cooperation from previous egoch
ness, which depends on the average throughput gain frgmyay need to contribute more to others in the current epoch.
cooperation over a relatively long period of time. For e@stTnerefore the long-term fairess model encourages users to
traffic, long-term fairness not only faithfully reflects useper- - contribute more when channel conditions are better, and in
ceived performance, but also gives more flexibility to eXploy,m gain more when it needs more help. In general it helps to
time diversity of wireless channels. As discussed abowe, chieve better system performance while enforcing thedas
cooperative game in an OFDMA cooperative cognitive radiQuytion over long run.
networks can be formulated as follows. A final remark is that our optimization framework maxi-
Each user, being primary or secondary, i#as the average mizes throughput gains without considering QoS requirdanen
total throughput summed across all subchannels, as it€-0bjg). Loth PUs and SUs for reasons of both tractability and
tive function. Itis bounded above and has a non-empty, dlos@gnciseness. QoS requirements, such as minimum delay, bit
and convex supportR™" is an N-dimensional vector that gror rate, etc., are usually specific to multimedia aptitice
represents the minimal average performance requiremeits &,c, as mobile video streaming, and is not addressed in
Sec[2.P. For PUs, the minimal requirement will be the optiméhis work that targets a general data transmission apjalicat

average throughput they could obtain should they choose Aoy can be incorporated as additional constraints into the

to cooperate with SUs, given by a multi-user uplink schewuli imization framework, and new algorithms can be devedope
algorithm [20]. For SUs, their minimal requirement that ¢en 54 4 possible direction of future work.

obtained without cooperation is clearly ze®is the feasible
set of resource allocat|pn tha-t satisfigs > R;{““,Vn. 3 AN OPTIMAL DISTRIBUTED ALGORITHM
The problem, then, is to find the NBS, i.e., to solve the i
optimization problem[{6) with?, and R™™®. The product >-1 Problem Formulation
terms in [6) make it difficult to solve. Mathematically, it isWe first consider a decentralized setting where the secgndar

It has been proved that, wheR™» = 0 for all n, NBS

2.3 An Optimization Framework Based on NBS

equivalent to solving the following: network is independent from the primary network, and can-
_ - not be controlled by the primary BS. Thus, BS allocates
~ max Z In (R, — R™) . (") resources to PUs priori to any cooperative transmission,
€S,R>Rmin e

and SUs have to “negotiate” distributively with PUs in order
Notice that this is a long-term utility maximization probie to have cooperation taking place. In other words, cooperati
whose optimum is achieved over a period of time. For theansmission serves as an add-on component to the existing



primary network, and ipportunisticallyharvested. This may The dual function becomes

correspond to the most immediate imple_mentati(_)n_scen.j{irio o] max  L(R,P,a,\ p,v)

CCRN that does not call for any change in the existing primary g\ p,v) =4 RPa (11)
infrastructure, and therefore is of practical interest. s.t. Eq. )+#)

In this case, PU channel assignment is done separately\Q¥ know from convex optimization theory that as long as
the BS, and is not part of the optimization. The resource fp can solve the maximization problem denoted by the dual
location problem, including relay assignment, SU subcBantynction g(\, u,v), we can obtain the optimal solution of
assignment, SU relay strategy optimization using_FLEC, amse dual problem by minimizingy(\, u,v) subject to the
PU-SU power control within the basic framework in Secl 2.8ynstraint that\, u and » are non-negative. Thus we focus

can be expressed succinctly as: on solving the dual function in the following.
R; — Rpin R; To solve g(A, u,v) with given A, s, v, it is equivalent to
R Z R, — o + Z ]:T solving the same problem with the following objective:
T deNp T ZT JENs T (9) R
s.t. 0=<P. 17 < pmax, 1 <
R i Rmin7R c C’(P,a), Z ( Z Z <Rz _ Rmin + Uz) Ri,j + Z Rj
ce i€END ]e/\/; g JGNS
where pmax = [ppax . puax]T js the power constraint
vector, P is an N x K matrix such thatP; denotes the — > Apf— > \jpi+ uj< Sp— Y Rf’j)>,
power expended by userin subchannet, a is an Ng x K i€Np JENs JENs iENP

matrix such thato; denotes the FLEC strategy of Sfyon
¢, and C(-) denotes the achievable rate region gienand o e R;— R} _ )

a (Eq. [@)-@)), with the flow conservation constraint at eacqﬁnglnal objective is |g_nored fol is given. N_once that in the
SU (Eq. [3)). Since only one PU and one SU can be actiflESt term of the objective;j could beN +1 which corresponds
on each subchannel, the column vecRf has at most two ' the possibility of direct transmission.

non-zero entries, and it also specifies relay and subchanneTherefore* the problem can be decomposed |Ktoper-
assignments subchannel problems. Recall that each subchannel is glread

assigned to a PU by the BS, the per-subchannel problem then
reduces to finding the optimal helping SU, relay strategg, an

3.2 Dual Decomposition , ;
. . . ) ) resource allocation, and can be shown alternatively asvist|
The decentralized probleril(9) is essentially a mixed intege

program, with the objective function being neither convex _ _
nor concave. However, in an OFDMA system with many j.p¢.p5.as R; — RM™

where the ternd> | A, pi®*— >, (5—Jzmm +1:) R from the

C

B e e
i) B+ = = Aipi = Ajpj

1
narrow subchannels, the optimal solution is always a convex +vj (RS p — RS )
function of p™®*, because if two sets of throughputs using s.t. Eq. )4#)i = F(c), a5 = {0,1},
two different sets oP anda are achievable individually, their (12)

linear combination is also achievable by a frequency-iivis
multiplexing of the two sets of strategies. In particulasing
the duality theory of([2R2], the following is true:
Proposition 1: The decentralized resource allocation prob-
lem (@) has zero duality gap in the limit as the number 3 Solving the Per-Subchannel Problem
OFDM subchannels goes to infinity, even though the discrefée previous sections show that in a decentralized settitig w
selection of subchannels, SUs and relay strategies arlv@ulio per-user power constraint and per-SU total flow constraint,
This proposition allows us to solve non-convex problems ihe resource allocation problem] (9) can be solved optimally
their dual domain. Note that although the proposition reggii and efficiently in the dual domain. However, this hinges upon
the number of subchannels to go to infinity, in reality thefficient solutions to the per-subchannel problem (12) civiis
duality gap is very close to zero as long as the number @fquired to solve the dual functigf(\, i, v). In this section,
subchannels is largé [13]. we show the per-subchannel maximization problem can be
Introduce Lagrangian multiplier vectoAs i, v to the power, solved efficiently via exhaustive search.
individual rationality, and flow conservation constraint$ie The main idea is to consideit, as the optimizing vari-

wheres is the primary user of subchannetletermined by the
conventional multiuser scheduling denoteds): K — Np.

Lagrangian becomes able and expres®y ;, RS, RS p in terms ofpf, p§. The per-

in subchannel problem is essentially a joint optimization of

L(R,P,a,\, pt,v) = Z L}?znm + Z & transmission strategy, relay assignment, and relay gyrate

e, B — 1Y s B For each subchannel its PU i needs to decide whether to

use direct or cooperative transmission, which SU to codpera

+ Z An <pglax — Zp;> + Z i (R; — R™™) with, while the chosen Sl needs to optimize its relay strategy
neN ek iEND denoted by the time sharing parametgre {0,1}. Therefore,

the exhaustive search is performed over a finite set defined by
+ Yy <Z Rp—> > Rf,j) (10) . PU transmission strategiedirect, cooperative
JE€Ns cek ceRieNp « SU relay assignmenti, j € Ns



« SU relaying strategies{primary data only ¢; = 0), its « Every PU solves fop¢ using [14) for direct transmission.

own data only ¢ = 1)} « Every PU solves the joint utility maximizatior ({L5)
We derive optimal solutiong¢, 55, &5 under direct or cooper- distributively using [(14),[(16) and;(c, \;, ;) to getp;
ative transmission modes for any combination of subchannel for cooperative transmission for eagh Then find the
¢ with its PU 4 and the SUj in the following. optimal j that maximizes the joint utility.
« Choose the transmission mode with better joint util-
3.3.1 Direct Transmission ity. The corresponding optimal resource allocation

If PU i chooses direct transmission, the problem becomes  J 55,5, a5 is then fixed.
1 Note that message exchange between PU and SUs are nec-
max (mm + /,LZ-) log(1+pfgi) — \ipi  (13) essary here. Specifically; and the optimal value of SU’s
ri \ (R — B™) benefits; (¢, A, v;) needs to be passed to AU
the solution of which is readily available by simple calailu

" 1 w1 " (14) 3.4 An Optimal Distributed Algorithm
Pi= |\ h _pminy Ty e . .
Ai (R — Rin) A g We have shown that the dual function can be decomposed into
_ o K per-subchannel problems, the optimal solutions of which
3.3.2 Cooperative Transmission can be obtained efficiently through exhaustive search. Then
Substituting the rate formulall (2)4(3) infa112) and reging the primal problem{99) can be optimally solved by minimizing
the terms, the objectivé_(IL.2) becomes the dual objective:
log(1+2pfgs;) (i —vy)log(1+ 2pfgs ;) . min g\, g, )
= = — )‘ipi (18)
2(R; — R™™) 2 st. A\p,v=0.
o log(1 + 2pSg5) N vi(1 - af)log(l + 2pfg5 p) \.,c Subgradient method can be used to solve this dual problem.
2R; 2 iPi " The updating rules are as follows:
(15) .
The first three terms, denoted &sj, \;, 11;, v;), represent AUED = 1AD 45O <Z Py, — pi?a")] , (29)
PU i's benefit by having SU; as its relay, discounted by ceK

possible violation of flow conservation with price; and (41) _ [ ON() (RminfR,)r (20)

power expenditure with pric&;. b.(j, \i, p;, ;) can be easily Hi .
optimized byi as onlyp$ is involved: (141)
v _ (l) O]
. A= 0k (S S R - ey
.1 1 (i — vy) 1 (16) c€EK €N ceK
Pi=y Ai(R; — Rmin) Ai 95 p¢ denotes the optimal power allocation for usern <

N. Following a diminishing step size rule for choosing
'Ehe last three terms, denoted B¢, A;, v;), represent SU W, @, kM the subgradient method above is guaranteed to
j's benefits from transmitting either its own or RY data on converge to the optimal dual variablgs[12]. The optimainali
subchannet, discounted by the power expenditure with pric@ariables can then be easily found

)‘jsz)\('iom?f;t:g'ﬁ'Q% \zir'iblisiﬂéaa:%gj d?)rr]eelgvosl\t/a?t?ngce:ce).o Observe that, because of the dual decomposition, dual
and 1, deriving the optmiéd‘yrespectlvely as Zhowﬂll?) optimization by subgradient method can be done idis
trlbuted fashion. First, in each iteration, the per-subchannel
comparing the objective values Ties can be broken artbjtrar problems[[I2) can be solved simultaneously by the PU of the
1 [Vj 1 ]* whenaé — o subchannel exchanging information with neighboring SUs as

2 1\, o in Subroutingll, though the objective jointly involves PU’s and
~c __ ] gJ,P 17 , .
P = 1T 1 Bk (17)  su's benefits.
5 [A 5 gc} , whenaj = 1. Second, subgradient updates can also be distributively per
7% 7

formed by each primary and secondary users. The algorithm
To summarize, the per-subchannel probldml (12) can ben be perceived as an iterative bargaining process. THe dua
efficiently solved via exhaustive search over a finite seneefi variable v; is exchanged between PUs and SUs and serves
by the transmission strategies, SUs, and SU relay strategi® a relay price signal to coordinate the level of coopematio
with FLEC as discussed above. The size of this discrete set\$en the relay traffic demanyl, >, R ; from PUs exceeds
very limited, making it feasible for a practical network. &h the supply>>, Rc from j, i.e. PUs over explogt j increases

entire procedure can be summarized as follows: its relay pricev; for the next round of bargaining to suppress
Subroutine 1:Exhaustive search for solving (12) for a giverihe excessive demand, as shown[]E (21). Similarly; fias
subchannet and its PUi: redundant relay capacity", RS, > .3, RS, it will

o Every SU;j maximizesb;(c, \;,v;) using [17), and ob- decrease the relay price to attract more relay traffic and
tainsp$, a5. It then sends its optimal uuht%(c Aj,vj), therefore obtain more channels to use. The process coatinue
andv;, to |ts neighboring PUs. until it converges to the optimal resource allocation.



The interpretation of other dual variablés and p; is also limited by the size of the neighborhood and does not scale up
worth mentioning. For each usek,, is easily understood aswith the problem size. Also, only scalar dual variables nieed
a price signal to regulate its power consumptipp.for each be updated for each user. We observe in simulations ilTSgc. 6.
PU is used to ensure that the resource allocation is indwiduhat the algorithm converges within about 20 iterations ostn
rational, i.e. it is beneficial for each PU in that the totatases.
throughput obtained from cooperatidi) is larger thanRin,

When R; < R®®, 4, will be increased as if(20), and S04 A CENTRALIZED HEURISTIC ALGORITHM
will p§ as in [I6). ThereforeR$ will be larger in the next

iteration. Both dual variables are kept privately and updatwe now proceed to the centralized setting. Recall that in the

independently with only local information. decentralized setting, the subchannel assignment to PUs is
done by the BS without considering the possibility of coaper
Algorithm 1 Optimal Distributed Bargaining for FLEC tive transmission, and thus is not part of the optimizatioms

1. The primary BS runs a multiuser scheduling algorithm ,[Snables efficient development of distributed algorithms,i®
determineR™™ for PUs without cooperation sub-optimal in general. Here we consider the scenario where

2. Each primary user initializes.© ,U(-O) Each secondary the SU cooperative transmission becomes an integral part of
' L LT T ) (0) primary BS scheduling, and SUs abide by the scheduling
user initializes both power and relay pnc&%’ g decisions, provided that the resource allocation is fair as
3. Given ’\(l,)’/‘(l)”’(l)' each PUi coordinates with each refiected by the NBS fairness. With centralized FLEC, we
neighboring SUj concurrently to solve the per-subchannglaye an additional dimension to optimizgiobal subchannel
resource allocation problerh (12) usiSgibroutind 1L assignmenfor both PU and SU.
4. SU j bargains by performing a subgradient update for the
relay pricev" as in [21). PUi updatesu” as in [20).
Each user also updates the power pdéfé as in [19). ) o
5. Return to stefp]3 until convergence. The problem can be formulated in a similar way as the

6. Every user update®, from its total throughput®,, in decentralized problem[](9), and optimally solved via dual
this epoch. Every PU updatesR™™ from R™" in Step decomposition and subgradient update. However, it is com-
" 7 7

1. They will be used for resource allocation in next epociutationally prohibitive to do so. Since the BS can now assig
any subchannel used by any helped PU to any helping SU, at

. . . , , each iteration, the per-subchannel problem now becomes:
The complete bargaining algorithm is shown in Algorithim 1.

Since it optimally solves the dual problein]18), it optirgall

4.1 Motivation for Developing Heuristics

C

R, .
+ i Rf,j+ =— — \;p;

solves the primal probleni](9) according to Proposifibn 1. i,j-,i/,j%??;;/,a;/ (RZ- — Rmin R/

Theorem 2:The distributed bargaining algorithm as shown —Ajp§ + vy (R;ﬁp — Rf/’j,)
in Algorithm [1 always converges, and when it converges its s.t. Eq. @)4M)as = {0, 1}
solutionoptimally solves the decentralized resource allocation (22)
problem [9). Compared to the decentralized versibnl (12), there are addi-

We now analyze the amount of message exchanges diodhal variables, ', ;' to optimize, which represents the global
complexity here. For a pair of PU-SU, two messagesibchannel assignment. Specificallyis the PU assigned to
z/j,Ej(i,/\j7uj) need to be exchanged for eachThey can usec andj is its helping SU, whilg’ is the SU assigned to use
easily be piggybacked in the probing packets from SU to PU tcandi’ is the PU whose data is relayed py Note that: (5)
measure the channel gain, resulting in zero message exchamgeds not to be equal  (5’). The solution of this problem
overhead. The complexity of solviny per-subchannel prob- thus has to exhaustively search all possible combinatidns o
lems by exhaustive search @(K Ng). The complexity of PU-SU pairs for each subchannel, which has a complexity of
the subgradient update is polynomial in the dimension of thi@(K N3 NZ) since distributed concurrent optimization is not
dual problem, which ig<. Therefore, the complete algorithmpossible.
has complexity polynomial ik Ns. While this may render  Moreover, because of the global impact of centralized sub-
it infeasible for real-time scheduling withif—=10 ms when channel assignment, the speed of convergence of dual kesiab
the network scales, the distributed nature of the algorithiu, v scales up with the size of the dual problem which scales
makes it possible for each PU tmncurrentlysolve the per- quadratically withNp and Ng, instead of being independent
subchannel problem, reducing the complexity to ofiVs). of the dual problem size as in the decentralized case. Nate th
Also, each user can update their own prices as dual variabédthough the convergence of subgradient method is guaente
independently. Further, in reality, only a few SUs residing the speed of convergence is not, and often depends heavily on
the neighborhood of the PU can potentially help and thus hapeblem conditioning and scaling [12]. From our computa-
to be considered. Therefore from the network point of viewional experiences, the convergence of subgradient updste
each round of bargaining has complexi®f(1). too slow to be useful for practical use as will be shown in

Careful readers may be concerned with the slow conveSec[6.B.
gence of the subgradient updates, especially when thegermobl Given that complexity has been significantly increased, we
scales up. We comment that since each PU only needsfaous on developing efficient heuristics in this sectionjolih
bargain with neighboring SUs, the convergence complezity ieduce the complexity while maintaining good performance.



Nevertheless, the slow subgradient based centralized algoz; ; is the binary variable denoting the relay assignment
rithm, called Centralized Optimization for FLE®ereafter, is of SU j to PU 4. Thus, for PUj4, its overall cooperative
used to derive the optimal performance as a benchmark adhroughputR; ; when matched to Sy is the minimum of

Sec[6.4. the two hops PU-SU and SU-BS. Wheérhooseg = N +1,
_ o _ i.e. direct transmission, the throughput is calculatednfithe
4.2 Overview of the Heuristic Algorithm Shannon formula. For Sk} the overall cooperative throughput

To make the problem more tractable, we decouple it #;; when matched to PW is implied from the time-sharing
three orthogonal dimensions: relay assignment, subchangi&ategy, since it must relay all primary traffic whenever
assignment, and power control. First, we derive optimalyrel possible.
assignment using bipartite matching, assuming that each SU

is only able to help one distinct PU and one PU can only

be matched to one SU. This simplification is reasonable as it
ensures a certain level of fairness. Then we assume thatrpowe

is equally distributed, and derive an subchannel assighaien

gorithm. Even with optimal relay and equal power assignment

this turns out to be an NP-hard problem. We propose a sub-
optimal algorithm based on randomized rounding and prove -
its approximation ratio. Finally, power allocation is sefvto Vi V2

maximize performance with the given subchannel assignmehig. 2. Weighted bipartite matching for optimal relay
Be reminded that as an initialization step, the BS first penfo assignment.

a multi-user scheduling [20] to determidg™", R;*™ for PUs  The above relay assignment is a weighted bipartite matching
before the three component algorithms run. The entire §&uiri problem that can be optimally solved. To see this, consguct
algorithm is calledCentralized Heuristic for FLEGereafter. graph A = (Vi x Va, E) whereV; and V; correspond to the
We do not claim that our heuristic design is the only choicget of PUs and SUs respectively as shown in Hig. 2. We patch
here. In fact other heuristic designs are entirely possite g void vertex toV; to incorporate the direct transmission. The
example, one may choose to solve the subchannel assignmfife sett corresponds taVp(Ng + 1) edges connecting all

first, then relay assignment, and finally power control. It i§ossible pairs of users in the two vertex sets. Each ¢idge
also possible to jointly solve two of the three orthogonaarries a weighty; ;, where

dimensions. For example one may choose to solve the joint R ‘ R
problem of relay and subchannel assignment and then compute o Ry - R Ry,

3‘{ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, e

Ry Ns+1

w _ _L
the power allocation based on the solution of the joint gFobl YR, — R R,

These possibilities are beyond the Scope of this paper and fe,, edges connecting PUs to the void SU that we patched,
as future research, since they have different formulatans 5 oqge weights have captured the maximum marginal utility
require .dlfferent solutions. We' do nqt claim 'that. our hdiais given by direct transmission. Observe thatis bipartite, op-
design is the best, although simulation studies in Sec. @ shf, 5| relay assignment is then equivalent to finding maximum
that it improves performance significantly compared 10 thgaighted bipartite matching oA. The Hungarian algorithm
conventional identical channel cooperation. is a popular polynomial-time algorithm to solve it optinyall
4.3 Relay Assignment [23]
Here, we model each useras having arimaginary channel

. . . : ; f 4.4 Subchannel Assignment
with a normalized channel gain to noise raiio = = > _ g5 ) i o ) )
and powerp™@. Then the optimal FLEC strategy reduces t§°F PUS using direct transmission as determined by optimal

simple time-sharing on this channel. Assuming each SU ¢y assignment, they do not share resources with SUs sand a
only help one distinct PU and one PU can only be matchéHCh cannot benefit from SU cooperation. Therefore they use

to one SU, the optimal relay assignment under the badlle same subchannels as allocated in the initializatiqn Bt
o one o i’n Sed 713 can be determined by: the set of PUSVF that use cooperative transmission, the set

R R of their allocated subchanne{S® in the initialization step will
- (Rij— R™ Ry be collected and re-assigned by the following algorithnt. Fo
12%3(1} ,;P %+ i R; — Rin R; each PU; and its unique helping S{i), we assume they will
[3 je o

max

R 1 use powerp; = ”T, Dj(i) = p;% respectively on each sub-
st R;; = 3 min (log(l + 2pi"**g; ;), log(1 + Zp}“a"g.ﬁp))channel, wheréds; is the number of subchannels allocated to
log(1 4+ 2pmaxg. . +in th'e initialization step[[20]. Such an equal power asswpt

_ log(1 + 2pi"**gi ;) ] , is widely used and leads to subchannel assignment algaithm
log(1 + 2pj*g; p) with near-optimal performance, as reported extensive@], [2

A 1

) VieNp,j€Ns, [24] and will be shown in Se¢.8.4.
Ri nv+1 =1og(1 4+ p**G;), Rnt1,: = 0, Rn1 = 00. The subchannel assignment problem can be formulated as
Z zi;=1,Yj € Ns, Z zij=1,Yi € Np in (23): wherew;”, ;) denotes the marginal utility (normalized

iENP JENs to a large valueuy,,,) obtained by PU on being assigned;



on PU-SU link in the first time slot (i.ew;’ , = 0.5log(1+ Algorithm 2 Rounding-based Subchannel Assignment

Qpigflj)/([gi_égnin)), andwjfi) » denotes the marginal utility - Formul_ate the problem using the IP above. Solve its LP
of assigninge, for j(i) on SU-BS link in the second slot (i.e.  relaxation withz7*, y;#, 37 being relaxed td0, 1]. Let the

wsty p = 0.510g(1+2p;) 952, p)/(Ri— RP™). w§? denotes LP solutions bei;", 7;*,9;* anda;, b;. _
the normalized marginal utiﬁity of SY on being assigned, 2. Adopt the following procedure to round the fractional
for its own dataD.5 log(1 +2p;95%)/R;, anda;, b; denote the solutions, £7', g2, to integral values,ii',g;2, where
aggregate marginal utility (flow) achieved by Hland SUj ne{ie NFYU{jeNs}
respectivelyx;* is the binary variable denoting whether is « For everyc,, round y22 to 1 (g¢2) with probability
assigned to PU in the first time sloty;? denotes whethef, ge2. If o is the user to whomn, is assigned, then
is assigned ta’s helper SUj (i) for relaying in the second 92 =0,Yn # n.
time slot, andy;* denotes whether, is assigned to SY for . Updated; — Zﬂfj’g?w b = Zz]_"‘;”f . wheres is
its own transmission in the second time slot. a constant derived in the Appendix. Run the LP again
max Z a; + Z b; (23) on z;* only. Letz;* be the solutions of the new LP.
RTINS ieNE e o Forcy, roundzf* to 1 (z*) with probability 7" . If
i is the PU¢, is assigned to, thef;* = 0, Vi # 1.
s.t. Z y;? - wi? =b;,Vj € Ns,

coEKR

Yool wih =an Yy wi p=a, Vi€ NF, 5 IDENTICAL CHANNEL COOPERATION

cLERT c2€XT In previous sections, we have addressed the resourcetaioca
Soaft =1, )y + Y Y =1V, € KR, problem with FLEC in both decentralized and centralized
PENE iENE JENs settings. In this section, we present solutions for resoatio-

) . cation with conventional identical channel cooperatiolC)C
Theorem 3:The subchannel assignment problem under the . . e

S which makes our analysis complete. The motivation to study
above IP formulation is NP-hard.

Proof: The problem can be reduced from type-dependeCtC here is that it can serve as the performance benchmark

multiple knapsack problems (MKP), where each set of kna or our flexible channel cooperative scheme. Also, due to
P P P ' Rnplementation and complexity considerations, FLEC may no

;agrkjsgisoirjzirb;} Ic_:_r;}ges tr(())fiil o?‘I:ﬁ(r)irz;tti;ypaen(it;;nn? (Sslt?lgca:da;jnr?gé feasible in certain scenarios, whereas CC is compdsative
y Y)- P 9 easier to implement due to its simplicity. Similar to FLEGs w

depends not only on the knapsacks but also the type of themn, . . .
The one-type MKP is known to be NP-hard and even hard r!:so consider both decentralized and centralized CC.

approximate([25]. Therefore our problem is NP-hard. [ )
Given the hardness of the problem, we present a rounding Decentralized CC
based algorithm to solve it as shown in Algorithm 2. It ensuré.1.1  Problem Formulation
that each subchannel is assigned to at most one user for l@éheduling and resource allocation of decentralized CC can
slots. We now capture the performance of the algorithm. e similarly formulated as that of FLEC in Sdc.]3.1. The
Theorem 4:Algorithm [2 provides an approximation ratiokey difference is that, the per-subchannel flow consematio
of 1 — /4Ns 1In (KR) with high probability, wherek©* is constraints need to be satisfied for each subchannel, thstea

R
the cardinzflity of the subchannel $6R. of only total flow conservatiorL {5) for FLEC. Mathematically
' Proof: Refer. to the Appendix in the supplementary ma- Z RS, < RS p,VjeNs,ceK. (24)
terials for a detailed proof. O Py '

Therefore, its performance becomes better when there i
larger magnitude of available subchannels to users in the s i
tem. Since the number of subchannels in a practical OFD Arategy: . .
system is much bigger than that of users, Algorifim 2 can be o € [0,1),¥e € K, j € Ns (25)
expected to provide good performance. instead ofa§ = {0, 1} for FLEC. o # 1 sincej must relay

in CC. The problem can then be presented as:

aaddition, we have the following for the time sharing

4.5 Power Control R; — Rin Z R

max — —
R.P, ; — Rmin ;
After all the subchannels are allocated as above, power can v R, — R} Pl R;

be allocated to each user optimally. For PUs with direct 4T max min B B

transmission, optimal power allocation is a simple watding SLP-17 Zp™ R = R, (@) — @), @) - (25). (26)
solution. For PUs with cooperative transmission, optimal From an intuition level, CC has more flexible time shar-
power allocation is performed on a per-pair basis with theing strategy, but requires the relay transmission to be on
unique helping SUs. With subchannels allocated and their uke identical subchannel. FLEC is more flexible in terms
on an SU determined, power allocation on each pair of PU-31f channel sharing strategy for cooperative transmisdboih,

is a standard convex optimization problem and can be readihe time sharing strategy is restricted. From an optinazati
solved by KKT conditions. We omit the details here. point of view, CC hadVgs K per-subchannel flow conservation



constraints, while FLEC only had’s total flow conservation we need to derive optimal solutions, p§, a5 under direct
constraints, wher&/s is the number of SUs anll the number and cooperative transmission modes for any combination of
of subchannels as in Sdc. R.1. Given tliatis typically on subchannek with its PU i and the SUj. Readily we can
the order of hundreds in a practical OFDMA system, C8ee that for direct transmission, the optimal solutigris the
formulation has far more constraints than FLEC. Becaussethesame as in[{14). However, for cooperative transmission, the
flow conservation constraints directly impact SU’s thropigth derivations are different from the previous analysis.
for relay and its own transmission as shown (3), they The first observation is that, maximization of the problem is
are active constraints that directly impact the optimiati achieved with the inequality of the flow conservation camistr
objective. Thus, it is not a surprise that FLEC outperformechieved as equality. This can be easily verified by obsgrvin
CC in both decentralized and centralized settings, as we what increasingr;, ,, any further beyond; ; will not increase
show in Sec[16. the utility of PU4. On the other hand, it will decrease the utility

In general, [[2B6) can also be solved in the dual domaaf SU j in the objective function, sincg will inevitably have
by taking advantage of convexity through frequency sharidgss resources to improve its own throughput.
in OFDMA networks. The same set of techniques, including with this observation, and by substituting the rate forraula
dual decomposition, exhaustive search for the per-suletan@)—(3), we need to solve the following:
problems, and subgradient method to update the dual vasiabl

: - . 1

can be applied in the same way as in Secl 3.2. Howevermax (__ +Mz’> log(1 + 2pSgs ;) — \ip§
due to the per-subchannel flow constraint, a different dudl#®  \2(R: — B™") 7

decomposition technique is used to efficiently achieve trad d a5 log(1 + 2p5g5) e
optimum via the subgradient method, making the analysis 2R; iPj
different. We show the differences in details in the follogi log(1+2pSgs,) (1 —a5)log(1+ 2p5gS p)
s.t. L = At
" 2 2 ’
5.1.2 Dual Decompsition c
P as € [0,1). (30)

Recall in the decentralized FLEC problenh (9), we relax power
flow, and individual rationality constraints, so they candse Essentially, this is a constrained non-linear maximizatoth
coupled into per-subchannel constraints, and the duadivari respect to two variables with standard solution methods. Bu
updates can be understood as coordinating these constrdirfirns out quite difficult to obtain a closed form solutiofe
such that, when combined together, they are satisfied anthe &sort to numerical methods to obtain solutions efficiently

of the process. In the decentralized resource allocatioblem ~ The entire procedure to solve the per-suchannel problem for
of CC (28), the flow constraint is already in the decouple@C thus can be summarized as follows:

form to be satisfied for each subchannel. Thus, we only needSubroutine 2:Exhaustive search for solving (29) for a given
to relax the total power and individual rationality congtita. subchannet and its PU:i:

As discussed, the Lagrangian can be written as: « Solve forj¢ using [I2) for direct transmission.
R, — Rmin R. « Contact each neighboring Sy to obtain A;, g7 and
LR, P,a,\,u) = Z ﬁ + Z = R;. Solve the joint utility maximization probleni_(B0)
ieNp T Th JENs T numerically to get optimapy, p§, &5 for eachj. Then
_ find the optimalj that maximizes the joint utility.
+ > A (P?ax - ZP%) + > i (Ri—RM™). (27) . Choose the transmission mode with larger utility.
neN cek i€ENP Output the corresponding optimal resource allocation
The dual function is J, D5, b5, Q5.
\ Jnax LR, P,a,\ ) - The complete resource allocation for CC, denotedDis
_ Po . - . X X
g\ p) { st 0@ .- @) (28)  tributed Bargaining for CC, is shown in Algorithm[B.

. . . Algorithm 3 Distributed Bargaining for CC
By expanding the ternR;, R;, ignoring constant terms, and - - - -
. Z : 1. The primary BS runs a multiuser scheduling algorithm to
realizing that each subchannel is already assigned to aheU, t LS i ; .
determineR™" for PUs without cooperation.

er-subchannel problem can be written as Lo ) . -
P P 2. Each user initializes its power prldé,,o). Each PU initial-

e RS+ R A — At izes the dual variablg!®.
gpepSas Ry — Rmin DRI R T IR 3. Given A\(®, each PUi solves the per-subchannel resource

J
s.t. @)- @), @5), 75 ; < R p,i = F(c) allocation problem[{29) usin§ubroutind2.
(29) 4. Each usem bargains by performing a subgradient update

wherei is the primary user of subchannetetermined by the for the priceA,, as in [I9). Each PU also updates; as

conventional multiuser scheduling denotedrds): X — Nop. in (20). .
g ) s 5. Return to stef]3 until convergence.

5.1.3 Solutions to the Per-subchannel Problem 6. Every user update, from its total throughputiZ,, in
this epoch. Every PU updatesk*™ from R™™ in Step

Exhaustive search can also be used to solve the per-sulahann . L
. 1. They will be used for resource allocation in next epoch.
problem, as in SeE. 3.3. As we have seen, to enable such search




5.2 Centralized CC 5.3 Discussions

Through the analysis in this section, we can see that our
Finally we consider resource allocation of centralized CQBS resource allocation framework is readily applicable to
which takes into account subchannel assignment to PUs a@éntical channel cooperation. In general, CC makes the-pro
SUs. By the same argument as in Sec. 4, our focus is il easier to solve compared to that with FLEC. The reason
developing efficient heuristics with short running time. W s the straightforward time sharing cooperation strateuat t
low the same approach in developifgntralized Heuristics  simplifies the scenario and reduces the degrees of optiionzat
for FLEC and divide the problem into three dimensions, i.§reedom. However, optimality is sacrificed simply because
relay assignment, subchannel assignment, and power tontiithe sharing accounts for only a subset of all possible coop-
Readily we can see that the same relay assignment algoritBfgtion strategies under FLEC, as we have already seen from

based on maximum weighted bipartite matching can be usgg analysis and will be verified in the simulation studies in
here, since we would have an exactly the same problem fegfiz next secion.

mulation with only total flow conservation constraints, whe

all the channels are combined to form an imaginary channgl perrFoRMANCE EVALUATION

as in Sec[4]3. It is also straightforward that optimal power )

allocation follows the famous water-filling solution, givéhe To evaluate the performance of FLEC with the proposed

relay and subchannel assignment. The only difference tagn '€SOUrce allocation algorithms, we adopt empirical patarse
in solving the subchannel assignment, which turns out to model the fading environment. There are 128 subchannels

much easier. The entire algorithm is referred t€astralized CceNtered at 2.5 GHz, each with 312.5 kHz bandwidth. Chan-
Heuristics for CC thereafter. nel gain can be decomposed into a large-scale log normal
shadowing component with standard deviation of 5.8 and
path loss exponent of 4, and a small-scale Rayleigh fading
component. The inherent frequency selectivity is captimgd

an exponential power delay profile with delay spread 1.257

. . vS as reported via extensive measurement$ [26]. The entire
As in Sec[ZH, we only consider the set of PUE" that 40 MHz channel is partitioned into blocks of size equal to the

are assigned with an unique helping SU each. Their allocat(g::(gjnerence bandwidtiB, ~ 795.6 KHz. Three independent
subchannelsC? in the initialization step is re-assigned byRa%leigh waveforms acre generated for each block using the

the channel assignment algorithm. The same assumptions RAified Jakes fading model and a weighted sum is taken to

inherited, that each Pl and its L:jﬂiﬂue helping SY(i) use .50 jate the SNR. A scheduling epoch is of 5 ms duration,
i J (%)

equal powerp; = %vﬁj(i) = k.- respectively on each ang an evaluation period consists of 1000 scheduling epochs
subchannel, wher&; is the number of subchannels allocateghe number of PUs is set to 60, and the number of SUs varies.
to ¢ in the initialization step.

From the per-subchannel flow conservation constraift (24).

5.2.1 Subchannel Assignment

optimal time sharingy; ;) can be uniquely determined under 8 ‘ At
equal power aIIocatiojlyﬁzi,pj(i) on each subchannel. Specifi- 7t Egiosr’:;/ismfdniﬁ% |
cally, from , — . .
y, from (22) Tel lcentralized FLEC |
_ o)
log ( 1+ 2p:g5 .(; S - M
Gy = 1- ( 50) Veek® @y S5
log {1+ 2p;1y95,; 24
( 3()95( ),P) 2.4
whenc is allocated tai, j(7). Thus the corresponding optimal %’37
utility “f,j(i) is simply E ol
. log (1 + 2ﬁigf,j(i)) 645(1.) log (1 + 2]5]-(1-)9;?(1-)) 1r
Y0 T (R, — R 2R;;) 0
(32) 40 50 60 ?% 50 60
The subchannel assignment problem can be casted as: Number of SUs ]
Fig. 3. Overall throughput performances. The first three
max Z Z TEUT () bars represent PU throughput, and the last three bars
‘ cEKR jeNR represent SU throughput.
s.t. Z z¢=1,Yee K®
iENF 6.1 Overall performance of FLEC

The constraint is such that each subchannel is only alldcaigse first evaluate the overall performance of distributed and
to one pair of PU-SU. This can be easily solved by assigniR@ntralized FLEC compared with conventional identicalneha
each subchannel to a PUi that has the largest; ;). That ne| cooperation (“CC” in the figures). We us@entralized

Is, i = argmax;c \r ug ;- Heuristic for CCto derive CC performance as the benchmark



here. In Fig.[B, we plot the average throughput of both$1-9 0000000000000 OO0OO
PUs (first three bars) and SUs (last three bars). We caB ° P S S
see thatDistributed Bargaining for FLECand Centralized q>,1-8’ o .t L 0

Heuristic for FLECas in Sec[]834 provide 20-40% and 30—2 . . . )

60% improvement, respectively. It clearly demonstrates th_&i1 21 + A PU with 2 neighboring SUs
advantage of FLEC. A similar trend is also observed for SUsg "~ | * o A PU with 4 neighboring SUs
although the improvement becomes marginal when the number 5 10 15 20
of SUs scales up. The reason is that, though a larger number Iterations

of SUs provides more and better cooperation for PUs and thus

) . ’ ! (a) Fast convergence d@istributed Bargaining for FLEC
improves their throughput, it results in fewer channelsésh

00

to each SU, and a lower degree of optimization freedom. %’1
>
E
1 2 50
&
Q9 . L .
0.8; ] 8 —Centralized Optimization
§ OO 200 400 600 800 1000
uwo.e— 1 Iterations
é (b) Slow convergence ofentralized Optimization for FLEC
é 0.4; Fig. 5. Convergence of the algorithms (Ng = 50).
0.2L ==Topology 1] TABLE 1
Topology 2 Running time of component algorithms in Centralized
8 ‘ | | fTOPQIOQV 3 Heuristic for FLEC.
2 0.3 0.4 0.5 0.6 0.7 0.8 Com - e -
. ponent algorithm || Ave. running time (ms)| Min. | Max.
PU throughput improvement relay assignment 0.34 0.32 | 0.35
; ; _ subchannel assignmer) 0.26 0.2 0.29
22&4. Effects of topology on PU throughput improve power allocation 0.19 017 | 032
6.2 Effects of Topology We then study the algorithms for the centralized problem.

Next we investigate the effects of topology on FLEC. WVe first observe thaCentraIizeq Opt('miza_tion for FLE@oes
chooseDistributed Bargainings the representative algorithm 0t converge even after 1000 iterations in Fig. 5. This eshoe
and evaluate three representative topologies, whgrequals ©Ur concern about the comp_lexny c_>f centralized ;ubgrad|en
40 and the average distance from PU to BS is controlled @date of two vector dual variables in SeE. 4, and justifies ou
be 0.8, 0.65, and 0.5 of the cell radius (topology 1, 2, and"otivation to design efficient heuristics. o
respectively). We observe from Figl 4 that while cooperatio 10 understand the practicality @entralized Heuristiove
always results in some improvement in PU throughput, seen@PServe the running time of its component algorithms in
ios dominated by high path loss and poor shadowing bendf’ Simulations. Tablé]1 summarizes the average as well
the most (topology 1), as more cooperation opportunities c&S theé minimum and maximum running time of the three
be explored. SU’s throughput also becomes better in theidmponent algorithms. We can see that all of them are on
scenarios, which we do not show here due to space linfft€ order of milliseconds on an Intel Xeon Quad-core CPU
This observation justifies the deployment of SU cooperatiéHNNiNg at 3 GHz with 2 GB memory and without any multi-

for throughput enhancement in primary networks with highréading. Therefore the usual scheduling deadlines of 5-
path loss and limited coverage. 10 ms [6] can be satisfactorily met. Through the discussions

here, we summarize that both tlEstributed Bargainingand
6.3 Practicality of FLEC algorithms Centralized Heuristi@re practical in terms of running time.
In this section we are concerned with the practicality of the _ _ ) o
FLEC algorithms. First, we study the convergence of of#4 Near-optimality of Centralized Heuristic
distributed algorithm for decentralized FLEC. Fid. 5 showg/e now evaluate the performance lossC&ntralized Heuristic
the convergence obistributed Bargainingor two randomly compared with that ofCentralized OptimizationRecall that
chosen PUs with different number of neighboring SUs. [Eentralized Optimizations developed via the same method-
is clear that the distributed algorithm converges within 26logy of dual decomposition and subgradient update as used
iterations, validating its feasibility in practice. Theasdn for in Distributed Bargainingn Sec[4. As seen from Fifi] 6, with
the fast convergence, as discussed in 8eé¢. 3.4, is mainly thspect to the average throughput of both PU and Ghtral-
limited size of neighborhood. With distributed and coneutr ized Heuristiclosses about 5% in all cases. We also evaluate
operations, it is indeed suitable for practical implem#éata the performance loss with different values ygf**, and find



101 #-Centralized Optimization, PU which represents a more practical network scenario and has
9/ -e-Centralized Heuristic, PU not been considered before.
— gl =#=Centralized Optimization, SU Resource allocation with cooperative diversity has been
g -8~ Centralized Heuristic, SU ,_ . .a==" @===n=- extensively studied in general wireless networks! [31[}[33
= 7r _,.--";____..-o ------ Specifically, our paper is more related to work in cognitive
= 6l __,-::__.-"' radio or cooperative OFDMA networks. For the former, most
o work [34]-[3€] consider maximizing SUs’ throughput with
= constrained interference to PUs. In other words, they ail co
o sider the underlay paradigm. For the latter, most relatealito
= s o work are [13] and[[1/4].[[13] addresses the problem with atjoin
- ~$ consideration of relay assignment, channel allocatiotgyre
strategy optimization, and power control. Our previous kvor
130 4‘0 5‘0 6‘0 7‘0 80 [14] consjders the problem with a novel netvx_/ork F:oding b:_;lsed
Number of SUs cooperation strategy, and proposes approximation aktgosit
) o ) o with performance guarantees. Compare to these work, we
Fig. 6. Near-optimality of Centralized Heuristic. consider the performance of primary and secondary users

decreases. The reason is thaPintly, and apply the concept of Nash bargaining solutions

&‘%%J to ensure both parities benefit from cooperation fairly
The application of Nash bargaining to multi-criteria op-

timization is not new in the networking field. [37] applies

that the gap widens whep}"**
our subchannel assignment is based on the assumption df e
power allocation, which becomes invalid whefi** is small,
and affects the performance of owWentralized Heuristic . . .
Numerical details are not presented because of Iimitedespa'f: to ensure fa”’?ess in a network flow control problem.
Due to slow convergence @entralized Optimizatignve may Kelly n the seminal Work_ [11] h_as alsp shown that Nash
conclude thatCentralized Heuristi@achieves a good tradeoff bargaining ensures proportional fairmess in a TCP setiits

between performance and complexity, and is amenable %s been also applied to allocate resources in cooperative
practical implementations OFDMA networks [[18], [19]. These works do not consider

the inefficiency of conventional cooperation methods in the

context of multi-channel CCRN, and only heuristics without

7 RELATED WORK any performance bounds are given. Finally, our conference

A plethora of work has been done on spectrum sharingrsion of this papet_[1] does not study the identical channe

based on cognitive radid |[2]. Generally, they fall into #arecooperation in details.

paradigmsjnterweave, underlagyandoverlay[27]. The inter-

weave paradigm insists that SUs should only transmit whéh CONCLUDING REMARKS

PUs are not, while the underlay paradigm allows SUs to tranphis work represents an early attempt to study OFDMA

mit concurrently with PUs provided that their signals do naooperative cognitive radio networks. The central questio

cause harmful interference. Essentially, in both cases&@8#s addressed is how to effectively exploit secondary user co-

transparent to PUs. Theverlay paradigm, which is the focus operation when conventional cooperation method becomes

of this paper, assumes PUs have side information about Siggfficient in this scenario, which has not yet been explored

and leverages them to improve primary network performanagie propose FLEC, a flexible channel cooperation design to

However, most existing works focus on information thearetiallow SUs to customize the use of leased resources in order to

analysis [[28]. maximize performance. We develop a unifying optimization
In networking literature,[[4] first proposes the idea of coframework based on Nash bargaining solutions to address

operative cognitive radio network, where the secondarysuséhe resource allocation problem with FLEC, where relay as-

can earn spectrum access in exchange for cooperation v§iginment, subchannel assignment, relay strategy opfiimiza

the primary user. A Stackelberg game is formulated where thad power control intricately interplay with one anothen A

primary user acts as the leader and determines the optirgptimal distributed algorithm as well as an efficient celiteal

time sharing strategy in maximizing its transmission rf8$. heuristic with near-optimal performance are proposed. Mt a

considers a slightly different setting where the traffic deoh extend our framework to consider resource allocation with

of primary user is taken into account, and the utility fuanti conventional cooperation.

includes a revenue component from secondary users. [29]
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