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Abstract—We study the resource allocation problem in an OFDMA based cooperative cognitive radio network, where secondary users
relay data for primary users in order to gain access to the spectrum. In light of user and channel diversity, we first propose FLEC, a
novel flexible channel cooperation scheme. It allows secondary users to freely optimize the use of channels for transmitting primary
data along with their own, in order to maximize performance. Further, we formulate a unifying optimization framework based on Nash
bargaining solutions to fairly and efficiently allocate resources between primary and secondary networks, in both decentralized and
centralized settings. We present an optimal distributed algorithm and a sub-optimal centralized heuristic, and verify their effectiveness
via realistic simulations. Under the same framework, we also study conventional identical channel cooperation as the performance
benchmark, and propose algorithms to solve the corresponding optimization problems.
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1 INTRODUCTION

Cognitive radio, with the ability to flexibly adapt its transmis-
sion parameters, has been considered a revolutionary technol-
ogy to open up dynamic access to the under-utilized wireless
spectrum [2], [3]. Recently, a new paradigm where primary
users (PUs) can leverage secondary users (SUs) for their own
transmissions, termedcooperative cognitive radio networks
(CCRN), is advocated [4], [5]. In CCRN, SUs cooperatively
relay data for PUs in order to access the spectrum. Assum-
ing that SUs have better channel conditions to the primary
receiver, cooperative relaying can greatly increase the primary
transmission rate. Meanwhile, SUs also gain opportunitiesto
access the spectrum, resulting in a “win-win” situation.

A single channel network with only one PU has been
considered in [4], [5]. The PU leases its channel to SUs for a
fraction of time in exchange for cooperative transmission.SUs
allocate a portion out of their time fraction for relaying primary
data, and the rest for their own traffic. A Stackelberg game is
formulated to determine the optimal time sharing strategy.

In this paper, we investigate cooperative cognitive radio
networks from a new perspective. We consider multi-channel
cellular networks based on OFDMA, e.g. IEEE 802.16 [6]
for the primary network, with multiple SUs assisting multiple
PUs on the uplink. Multi-channel networks impose unique
challenges of realizing the cooperative paradigm, as we narrate
below along with our original contributions.

First, we observe that conventional user cooperation per-
meated through the literature [7] becomes inefficient when di-
rectly applied to multi-channel CCRN. It implicitly postulates
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that data on one channel has to be relayed on exactly the
same channel, which may not be amenable to relaying from
a performance perspective. Meanwhile, some other channel
may have abundant capacity to incorporate additional data
with little cost. In other words, cooperation using the same
channel misses the bulk of PU-SU cooperation opportunities,
by unnecessarily limiting the space of SU resource allocation
to only the temporal dimension.

Our first contribution in this paper is a new design for
cooperation among SUs and PUs, termed Flexible Channel
Cooperation (FLEC), that opens up all dimensions of resource
allocation for SUs. It takes advantage of channel and user
diversities available in multi-channel networks [8], [9],and
allows SUs to freelyoptimizeits use of resources, including
channels and time slots leased by PUs, as well as power, for
relaying primary data along with its own data, as long as all
the primary data it received can be delivered.

The basic idea of FLEC works as shown in Fig. 1. We
consider the simplified case where time is equally divided
into two slots among cooperating users1. PUs transmit in
the first slot to SUs, and SUs transmit in the second to the
primary base station (BS) and to their own access point (AP).
A SU strategically optimizes its use of the leased resources.
For example, it can use subchannel 1 solely for relaying data
aggregated from both subchannel 1 and 2, and use subchannel
2 solely for sending its own data as in Fig. 1. The intuition
is that, if subchannel 1 has superior conditions on the SU-
BS link but poor conditions on the SU-AP link, it is much
more efficient using subchannel 1 to relay data from both
subchannels. Such channelswappingor shuffling results in

1. Practical justifications for this simplification are as follows. Due to
channel diversity, the optimal time sharing strategy is considerably different
across the channels for a given pair of PU-SU. From a system perspective,
it becomes difficult to structure the uplink bursts in the frames, because
transmissions on some subchannels will finish earlier than those on other
subchannels.



boosted SU throughput, as well as larger relay capacity for PU,
since the overall spectral efficiency is improved. The spectral
efficiency gain can in turn be translated into more cooperation
opportunities, as well as increased network capacity and better
performance.
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Fig. 1. The motivating scenario for Flexible Channel
Cooperation (FLEC).

The preceding description assumes a decentralized setting
where the primary and secondary networks are independent.
Subchannels are assigned to PUs by the primary BSa priori to
SU cooperation, and only those assigned to the helped PUs are
leased to the respective helping SUs. In a centralized setting
where SU cooperation becomes an integral part of the resource
allocation performed by the primary BS, it becomes possible
to assign any subchannel to a helping SU, to further improve
the performance. We also consider the centralized FLEC in
our paper, which turns out to be more difficult.

The secondchallenge in multi-channel CCRN is how to
schedule the transmissions and allocate resources, in order to
maximize performance gains while ensuring fairness among
all users. A SU may assist several PUs (as in Fig. 1) simul-
taneously while a PU may also pair up with several SUs,
complicating the resource allocation problem. Moreover, in
reality, PUs and SUs are selfish in maximizing their own
utility. PUs compete among themselves when one SU resides
in a suitable position to relay for all of them; likewise SUs
compete among themselves if one channel has good conditions
for all of them. Our main objective in this paper, therefore,
is to developefficientyet fair resource allocation algorithms
for FLEC in multi-channel networks, which has not been
addressed yet.

To this end, oursecondcontribution is a novel unifying
optimization framework that jointly considers relay and sub-
channel assignment, relay strategy optimization, and power
control, based on the concept of Nash bargaining [10]. PUs
and SUs agree to jointly optimize a social cost function,
known as the Nash product, which is essentially the product
of utility functions of the cooperating PUs and SUs. The
solution concept, known as the Nash bargaining solution
(NBS), is a unique Nash equilibrium point that is guaranteed
to provide Pareto efficiency with NBS fairness among PUs
and SUs, which is a generalized proportional fairness notion
[11]. Therefore, gains from cooperation to individual PU and
SU are allocatedproportionally according to their channel
conditions, i.e. their contributions to the social welfaregain.
These properties make NBS favorable in our problem.

We consider both decentralized and centralized FLEC as in-

troduced above. In the decentralized case, we wish to develop a
distributed algorithm that can be performed by users indepen-
dently with local information only. We tackle this using a dual
decomposition technique to transform the global optimization
into many per-subchannel problems that can be solved by the
respective PUs distributively and optimally. To account for
SUs’ utility, we rely on the subgradient method [12] to allow
PUs to bargain with neighboring SUs autonomously to arrive
at the optimal solution for the per-subchannel problem, i.e. the
Nash bargaining solution.

In the centralized case, cooperation opportunities are to be
carefully invented and engineered, rather than distributively
harvested. We identify the inefficiency of subgradient method
in this problem, design a three-step heuristic via a decoupling
approach, and prove the approximation ratio for the decoupled
subchannel assignment algorithm. Both algorithms are highly
efficient in that they can meet typical scheduling deadlinesof
5–10 ms [6] in OFDMA systems. In addition, we extend our
framework to consider resource allocation with conventional
identical channel cooperation to complete the analysis. Thus,
we believe our work sheds light on the design and implemen-
tation of OFDMA based cooperative cognitive radio networks.

The remainder of this paper is structured as follows. Sec. 2
introduces our system models and the concepts of NBS. In
Sec. 3 we formulate the resource allocation problem in decen-
tralized setting and present optimal distributed algorithms to
solve it. In Sec. 4, we consider the centralized version of the
problem and propose practical algorithms with performance
guarantees. We study the conventional identical channel coop-
eration in Sec. 5. We conduct extensive simulations to verify
our algorithms in Sec. 6 and summarize related work in Sec. 7.
We finally give concluding remarks in Sec. 8.

2 AN OPTIMIZATION FRAMEWORK

2.1 System Model

We start by introducing the system model. We consider the
uplink of a single-cell OFDMA network. We do not consider
an ad-hoc network where coordination between PUs and SUs,
and synchronization for effective cooperative communications
are difficult to achieve especially with multiple PUs. This is in
line with previous work on cooperative diversity [7], [13]–[15],
and on cooperative cognitive radio networks [4], [5], [16]2.

We do not model the inter-cell interference due to fre-
quency reuse. Inter-cell interference significantly adds to the
complexity of the optimization problem, and shall be dealt
with as a separate issue on its own right [17]. This simplified
interference model is also commonly adopted in related work
[4], [5], [13], [14], [18], [19]. The throughput of uplink
transmission is typically limited due to the power constraint
of PUs. Thus it is better suited to employ cooperation.

A number of SUs are located in the cell and perform coop-
erative transmission for PUs to access the primary spectrum.
We assume that PUs and SUs have infinite backlogged data
to send and the OFDM frames are synchronized. Cooperative

2. Although [4] considers an ad-hoc secondary network, its model consists
of only one PU who effectively coordinates the time sharing ofthe spectrum
with SUs and the cooperative transmission.



transmissions take place on an OFDM subchannel basis, and
transmissions in different subchannels do not interfere with
each other. Decode-and-forward multi-hopping [7] is used
when SUs relay primary data. Note that our results are readily
applicable when other relaying scheme is used. Moreover,
higher rates are achievable with more sophisticated cod-
ing/decoding schemes, e.g. maximum ratio combining based
on the signals received in both slots at the destination (instead
of multi-hopping) [7]. Here we focus on decode-and-forward
multi-hopping only for simplicity of presentation. Our analysis
and algorithms are readily applicable to scenarios with other
relaying and coding/decoding schemes.

We model the fading environment by large scale path loss
and shadowing, along with small scale frequency-selective
Rayleigh fading. The coherence bandwidth is in the order of
the width of a few subchannels so that adjacent subchannels
have similar channel conditions. Fading between subchannels
in different frames is independent, and remains stable during
each frame. We assume techniques for channel estimation are
employed and full channel side-information (CSI) is available,
which makes the optimization possible. Such assumptions
about the fading environment and CSI are commonly used as
in [13], [14], [18], [19]. Noises are modeled as i.i.d. circularly
symmetric complex Gaussian noisesCN (0, N0W ).

There areK subchannels,NP primary users andNS

secondary users in the network. LetN be the total number
of users, i.e.N = NP + NS . Let K = {1, 2, . . . ,K} be
the set of subchannels,NP = {1, 2, . . . , NP } the set of
PUs, NS = {NP + 1, NP + 2, . . . , N} the set of SUs,
and N = NP ∪ NS the entire set of users. To denote the
possibility of direct transmission, i.e. not cooperating with
any SU, we denote a void SU as userN + 1, and let
N+

S = {NP + 1, NP + 2, . . . , N + 1} be the extended set
of SUs. One subchannel can only be allocated to one PU, and
can only be leased to one SU.

For a given PUi ∈ NP , if subchannelc ∈ K with
bandwidthW and complex channel gainhci is allocated for
direct transmission, the achievable throughput is:

Rc
i,N+1 =W log (1 + pcig

c
i ) , ∀c ∈ K, i ∈ NP , (1)

where

gci =
|hci |

2

ΓN0W
.

As mentioned, the subscript(N + 1) is used to denote the
direct transmission mode.Γ is the coding gap to capacity and
pci denotes the allocated power. Without loss of generalityW
equals 1 in the subsequent analysis.

If PU i ∈ NP decided to leasec ∈ K to SU j ∈ NS

for cooperative transmission, then in the first time slot, the
achievable throughput on PU-SU link is

Rc
i,j =

1

2
log
(

1 + 2pcig
c
i,j

)

, ∀i ∈ NP , j ∈ NS , c ∈ K, (2)

since the effective power and throughput should take into
account the two-slot structure of cooperative transmission. For
SU j in the second time slot, under FLEC, it can freely decide
whether to usec solely for relay, or solely for its own data. For
conventional cooperation, it usesc jointly for both purposes

in a time sharing manner. W.L.O.G., letαc
j ∈ [0, 1] denote its

relay time sharing strategy. Thenj’s throughput for relay and
its own transmission is as follows, respectively:

Rc
j,P =

1− αc
j

2
log
(

1 + 2pcjg
c
j,P

)

,

Rc
j =

αc
j

2
log
(

1 + 2pcjg
c
j

)

, ∀j ∈ NS , c ∈ K. (3)

Note that for j = N + 1, i.e. direct transmission for PU,
obviously we have

Rc
N+1,P = Rc

N+1 = 0, ∀j ∈ NS , c ∈ K. (4)

In cases when other relaying and coding schemes are used,
for instance amplify-and-forward or compress-and-forward
with maximum ratio combining, we only need to change the
throughput expressions (3), and our results in this paper are
readily applicable. This is left as future work.

With conventional cooperation,Rc
i,j = Rc

j,P holds for any
c PU i leases to SUj. With FLEC, this does not have to hold
for every leased subchannel. The only requirement is that SU
j should deliver all data from the cooperating PUs, i.e. a total
flow conservation requirement as follows:

∑

c∈K

∑

i∈NP

Rc
i,j ≤

∑

c∈K

Rc
j,P , ∀j ∈ NS . (5)

2.2 Basics of Nash bargaining solutions

We present the salient concepts and results from Nash bar-
gaining solutions in this section, which are used in the sequel.
For details we refer readers to [10].

The basic setting is as follows: LetN be the set of players,
including PUs and SUs. LetS be a closed and convex subset
of RN to represent the set of feasible payoff allocations that
players can get if they all work together. LetRmin

n be the min-
imal payoff that then-th player would expect; otherwise, he
will not cooperate. Suppose{Rn ∈ S|Rn ≥ Rmin

n , ∀n ∈ N}
is a nonempty bounded set. DefineRmin = (Rmin

1 , . . . , Rmin
N ),

then the pair(S,Rmin) is called aN -person bargaining
problem.

Within the feasible setS, we first define the notion of Pareto
optimality as a selection criterion in a typical game setting.

Definition 1: The point(R1, . . . , RN ) is said to bePareto
optimal if and only if there is no other allocationR′

n such that
R′

n ≥ Rn, ∀n ∈ N , andR′
n > Rn, ∃n ∈ N , i.e. there exists

no other allocation that leads to superior performance for some
user without inferior performance for some other user.

The question that arises is: at which of infinitely many
Pareto optimal points should we operate the system? A possi-
ble further criterion is the fairness of resource sharing. In this
paper, we use the NBS fairness axioms from game theory.

Definition 2: r̄ is a NBS, i.e. r̄ = φ(S,Rmin), if the
following axioms are satisfied [10]:

1) Individual Rationality: R̄n ≥ Rmin
n , ∀n ∈ N

2) Feasibility: r̄ ∈ S
3) Pareto Optimality
4) Independence of Irrelevant Alternatives: If r̄ ∈ S ′ ⊂ S,

r̄ = φ(S,Rmin), then r̄ = φ(S ′,Rmin)



5) Independence of Linear Transformations: For any
linear scale transformationψ, ψ(φ(S ′,Rmin)) =
φ(ψ(S), ψ(Rmin)).

6) Symmetry: If S is invariant under all exchanges of
players, thenφi(S,Rmin) = φi′(S,R

min)∀i, i′.
Axioms 4-6 are called axioms of fairness. The irrelevant
alternative axiom asserts that eliminating the feasible solutions
that would not have been chosen should not affect the NBS
solution. Axiom 5 asserts that the bargaining solution is scale
invariant. The symmetry axiom asserts that if the feasible
ranges for all players are completely symmetric, then all users
have the same solution.

The following theorem shows that there is exactly one NBS
that satisfies the above axioms.

Theorem 1:There is a unique solution functionφ(S,Rmin)
that satisfies all axioms inDefinition 2such that [10]

φ(S,Rmin) ∈ argmax
R∈S,R�Rmin

∏

n∈N

(

Rn −Rmin
n

)

. (6)

It has been proved that, whenRmin
n = 0 for all n, NBS

fairness reduces to proportional fairness [18]. Note that in our
problem,Rmin

n for PUs will surely be non-zero since they
get positive throughput if not cooperate, while that for SUs
will be zero. Therefore NBS fairness here is different than
proportional fairness. In general, the intuitive idea is that after
the minimal requirements are met for all users, the rest of the
resources are allocatedproportionally to users according to
their conditions.

2.3 An Optimization Framework Based on NBS
For our problem, we wish to considerlong-term NBS fair-
ness, which depends on the average throughput gain from
cooperation over a relatively long period of time. For elastic
traffic, long-term fairness not only faithfully reflects users’ per-
ceived performance, but also gives more flexibility to exploit
time diversity of wireless channels. As discussed above, the
cooperative game in an OFDMA cooperative cognitive radio
networks can be formulated as follows.

Each user, being primary or secondary, hasR̄n, the average
total throughput summed across all subchannels, as its objec-
tive function. It is bounded above and has a non-empty, closed,
and convex support.̄Rmin is an N -dimensional vector that
represents the minimal average performance requirements as in
Sec. 2.2. For PUs, the minimal requirement will be the optimal
average throughput they could obtain should they choose not
to cooperate with SUs, given by a multi-user uplink scheduling
algorithm [20]. For SUs, their minimal requirement that canbe
obtained without cooperation is clearly zero.S is the feasible
set of resource allocation that satisfiesR̄n > R̄min

n , ∀n.
The problem, then, is to find the NBS, i.e., to solve the

optimization problem (6) withR̄n and R̄min
n . The product

terms in (6) make it difficult to solve. Mathematically, it is
equivalent to solving the following:

max
R̄∈S,R�Rmin

∑

n∈N

ln
(

R̄n − R̄min
n

)

. (7)

Notice that this is a long-term utility maximization problem
whose optimum is achieved over a period of time. For the

scheduling and resource allocation problem, it has to be
solved in each scheduling epoch because channel conditions
change over time. Therefore it is important to identify the
instantaneous objective function we optimize in each epoch
in order to arrive at long-term utility optimum. From the
seminal paper of [21], it has been shown that maximizing
the aggregate marginal utility

∑

U ′(R̄n) ·Rn at each epoch
exactly achieves long-term utility maximization. Therefore,
separating the terms for PUs and SUs, the basic resource
allocation framework for OFDMA cooperative cognitive radio
networks at each epoch is:

max
R∈S,R�Rmin

∑

i∈NP

Ri −Rmin
i

R̄i − R̄min
i

+
∑

j∈NS

Rj

R̄j

. (8)

Ri, R̄i, Rj , R̄j denote the instantaneous and average
throughput for PUi and SUj at current epoch, respectively.
Both R̄i and R̄j can be readily obtained by applying the ex-
ponential moving averaging technique.Rmin

i , R̄min
i are the in-

stantaneous and average throughput requirement respectively,
which can be obtained by running a multi-user scheduling
algorithm at each epoch [20], and using exponential moving
averaging technique.

Note that without considering long-term performance, the
optimization must guarantee fairness in each epoch. How-
ever, when a time window is used, the fairness requirement
is relaxed to the time window length. This provides more
flexibility to improve the spectral efficiency, by making the
current resource allocation related to previous ones. The term
R̄n−R̄

min
n in the denominator of (8) serves as a weight factor

to adjust the priority of usern. If the user has an unfairly
large throughput gain from cooperation from previous epochs,
it may need to contribute more to others in the current epoch.
Therefore the long-term fairness model encourages users to
contribute more when channel conditions are better, and in
turn gain more when it needs more help. In general it helps to
achieve better system performance while enforcing the fairness
notion over long run.

A final remark is that our optimization framework maxi-
mizes throughput gains without considering QoS requirements
for both PUs and SUs for reasons of both tractability and
conciseness. QoS requirements, such as minimum delay, bit
error rate, etc., are usually specific to multimedia applications
such as mobile video streaming, and is not addressed in
this work that targets a general data transmission application.
They can be incorporated as additional constraints into the
optimization framework, and new algorithms can be developed
as a possible direction of future work.

3 AN OPTIMAL DISTRIBUTED ALGORITHM

3.1 Problem Formulation

We first consider a decentralized setting where the secondary
network is independent from the primary network, and can-
not be controlled by the primary BS. Thus, BS allocates
resources to PUsa priori to any cooperative transmission,
and SUs have to “negotiate” distributively with PUs in order
to have cooperation taking place. In other words, cooperative
transmission serves as an add-on component to the existing



primary network, and isopportunisticallyharvested. This may
correspond to the most immediate implementation scenario of
CCRN that does not call for any change in the existing primary
infrastructure, and therefore is of practical interest.

In this case, PU channel assignment is done separately by
the BS, and is not part of the optimization. The resource al-
location problem, including relay assignment, SU subchannel
assignment, SU relay strategy optimization using FLEC, and
PU-SU power control within the basic framework in Sec. 2.3
can be expressed succinctly as:

max
R,P,ααα

∑

i∈NP

Ri −Rmin
i

R̄i − R̄min
i

+
∑

j∈NS

Rj

R̄j

s.t. 0 � P · 1T � pmax,
R � Rmin,R ∈ C(P,ααα),

(9)

where pmax = [pmax
1 , . . . , pmax

N ]T is the power constraint
vector, P is an N × K matrix such thatP c

n denotes the
power expended by usern in subchannelc, ααα is anNS ×K
matrix such thatαc

j denotes the FLEC strategy of SUj on
c, and C(·) denotes the achievable rate region givenP and
α (Eq. (1)–(4)), with the flow conservation constraint at each
SU (Eq. (5)). Since only one PU and one SU can be active
on each subchannel, the column vectorPc has at most two
non-zero entries, and it also specifies relay and subchannel
assignments.

3.2 Dual Decomposition

The decentralized problem (9) is essentially a mixed integer
program, with the objective function being neither convex
nor concave. However, in an OFDMA system with many
narrow subchannels, the optimal solution is always a convex
function of pmax, because if two sets of throughputs using
two different sets ofP andααα are achievable individually, their
linear combination is also achievable by a frequency-division
multiplexing of the two sets of strategies. In particular, using
the duality theory of [22], the following is true:

Proposition 1: The decentralized resource allocation prob-
lem (9) has zero duality gap in the limit as the number of
OFDM subchannels goes to infinity, even though the discrete
selection of subchannels, SUs and relay strategies are involved.

This proposition allows us to solve non-convex problems in
their dual domain. Note that although the proposition requires
the number of subchannels to go to infinity, in reality the
duality gap is very close to zero as long as the number of
subchannels is large [13].

Introduce Lagrangian multiplier vectorsλλλ,µµµ,ννν to the power,
individual rationality, and flow conservation constraints. The
Lagrangian becomes

L(R,P,α, λ, µ, να, λ, µ, να, λ, µ, ν) =
∑

i∈NP

Ri −Rmin
i

R̄i − R̄min
i

+
∑

j∈NS

Rj

R̄j

+
∑

n∈N

λn

(

pmax
n −

∑

c∈K

pcn

)

+
∑

i∈NP

µi

(

Ri −Rmin
i

)

+
∑

j∈NS

νj

(

∑

c∈K

Rc
j,P −

∑

c∈K

∑

i∈NP

Rc
i,j

)

(10)

The dual function becomes

g(λ, µ, νλ, µ, νλ, µ, ν) =

{

max
R,P,ααα

L(R,P,α, λ, µ, να, λ, µ, να, λ, µ, ν)

s.t. Eq. (1)–(4)
(11)

We know from convex optimization theory that as long as
we can solve the maximization problem denoted by the dual
function g(λ, µ, νλ, µ, νλ, µ, ν), we can obtain the optimal solution of
the dual problem by minimizingg(λ, µ, νλ, µ, νλ, µ, ν) subject to the
constraint thatλ, µλ, µλ, µ and ννν are non-negative. Thus we focus
on solving the dual function in the following.

To solve g(λ, µ, νλ, µ, νλ, µ, ν) with given λ, µ, νλ, µ, νλ, µ, ν, it is equivalent to
solving the same problem with the following objective:

∑

c∈K

(

∑

i∈NP

∑

j∈N+
S

(

1

R̄i − R̄min
i

+ µi

)

Rc
i,j +

∑

j∈NS

Rc
j

R̄j

−
∑

i∈NP

λip
c
i −

∑

j∈NS

λjp
c
j +

∑

j∈NS

νj

(

Rc
j,P −

∑

i∈NP

Rc
i,j

)

)

,

where the term
∑

n λnp
max
n −

∑

i(
1

R̄i−R̄min
i

+µi)R
min
i from the

original objective is ignored forλλλ is given. Notice that in the
first term of the objective,j could beN+1 which corresponds
to the possibility of direct transmission.

Therefore, the problem can be decomposed intoK per-
subchannel problems. Recall that each subchannel is already
assigned to a PU by the BS, the per-subchannel problem then
reduces to finding the optimal helping SU, relay strategy, and
resource allocation, and can be shown alternatively as follows:

max
j,pc

i
,pc

j
,αc

j

(

1

R̄i − R̄min
i

+ µi

)

Rc
i,j +

Rc
j

R̄j

− λip
c
i − λjp

c
j

+νj
(

Rc
j,P −Rc

i,j

)

s.t. Eq. (1)–(4), i = F (c), αc
j = {0, 1},

(12)

wherei is the primary user of subchannelc determined by the
conventional multiuser scheduling denoted asF (·) : K → NP .

3.3 Solving the Per-Subchannel Problem

The previous sections show that in a decentralized setting with
per-user power constraint and per-SU total flow constraint,
the resource allocation problem (9) can be solved optimally
and efficiently in the dual domain. However, this hinges upon
efficient solutions to the per-subchannel problem (12), which is
required to solve the dual functiong(λ, µ, νλ, µ, νλ, µ, ν). In this section,
we show the per-subchannel maximization problem can be
solved efficiently via exhaustive search.

The main idea is to considerpcn as the optimizing vari-
able and expressRc

i,j , R
c
j , R

c
j,P in terms ofpci , p

c
j . The per-

subchannel problem is essentially a joint optimization of
transmission strategy, relay assignment, and relay strategy.
For each subchannelc, its PU i needs to decide whether to
use direct or cooperative transmission, which SU to cooperate
with, while the chosen SUj needs to optimize its relay strategy
denoted by the time sharing parameterαc

j ∈ {0, 1}. Therefore,
the exhaustive search is performed over a finite set defined by

• PU transmission strategies:{direct, cooperative}
• SU relay assignment:j, j ∈ NS



• SU relaying strategies:{primary data only (αc
j = 0), its

own data only (αc
j = 1)}

We derive optimal solutions̃pci , p̃
c
j , α̃

c
j under direct or cooper-

ative transmission modes for any combination of subchannel
c with its PU i and the SUj in the following.

3.3.1 Direct Transmission
If PU i chooses direct transmission, the problem becomes

max
pc
i

(

1

(R̄i − R̄min
i )

+ µi

)

log(1 + pcig
c
i )− λip

c
i (13)

the solution of which is readily available by simple calculus:

p̃ci =

[

1

λi
(

R̄i − R̄min
i

) +
µi

λi
−

1

gci

]+

. (14)

3.3.2 Cooperative Transmission
Substituting the rate formulas (2)–(3) into (12) and regrouping
the terms, the objective (12) becomes

log(1 + 2pcig
c
i,j)

2(R̄i − R̄min
i )

+
(µi − νj) log(1 + 2pcig

c
i,j)

2
− λip

c
i

+
αc
j log(1 + 2pcjg

c
j)

2R̄j

+
νj(1− αc

j) log(1 + 2pcjg
c
j,P )

2
− λjp

c
j

(15)

The first three terms, denoted asbc(j, λi, µi, νj), represent
PU i’s benefit by having SUj as its relay, discounted by
possible violation of flow conservation with priceνj and
power expenditure with priceλi. bc(j, λi, µi, νj) can be easily
optimized byi as onlypci is involved:

p̃ci =
1

2

[

1

λi(R̄i − R̄min
i )

+
(µi − νj)

λi
−

1

gci,j

]+

. (16)

The last three terms, denoted asbj(c, λj , νj), represent SU
j’s benefits from transmitting either its own or PUi’s data on
subchannelc, discounted by the power expenditure with price
λj . Two optimizing variablesαc

j andpcj are involved here.
Maximization ofbj(c, λj , νj) can be done by settingαc

j to 0
and 1, deriving the optimalpcj respectively as shown (17), and
comparing the objective values. Ties can be broken arbitrarily.

p̃cj =



















1

2

[

νj
λj

−
1

gcj,P

]+

, when α̃c
j = 0,

1

2

[

1

λjR̄j

−
1

gcj

]+

, when α̃c
j = 1.

(17)

To summarize, the per-subchannel problem (12) can be
efficiently solved via exhaustive search over a finite set defined
by the transmission strategies, SUs, and SU relay strategies
with FLEC as discussed above. The size of this discrete set is
very limited, making it feasible for a practical network. The
entire procedure can be summarized as follows:

Subroutine 1:Exhaustive search for solving (12) for a given
subchannelc and its PUi:

• Every SUj maximizesbj(c, λj , νj) using (17), and ob-
tains p̃cj , α̃

c
j . It then sends its optimal utilitỹbj(c, λj , νj),

andνj , to its neighboring PUs.

• Every PU solves for̃pci using (14) for direct transmission.
• Every PU solves the joint utility maximization (15)

distributively using (14), (16) and̃bj(c, λj , νj) to get p̃ci
for cooperative transmission for eachj. Then find the
optimal j̃ that maximizes the joint utility.

• Choose the transmission mode with better joint util-
ity. The corresponding optimal resource allocation
j̃, p̃ci , p̃

c
j , α̃

c
j is then fixed.

Note that message exchange between PU and SUs are nec-
essary here. Specifically,νj and the optimal value of SU’s
benefitsb̃j(c, λj , νj) needs to be passed to PUi.

3.4 An Optimal Distributed Algorithm

We have shown that the dual function can be decomposed into
K per-subchannel problems, the optimal solutions of which
can be obtained efficiently through exhaustive search. Then,
the primal problem (9) can be optimally solved by minimizing
the dual objective:

min g(λ, µ, νλ, µ, νλ, µ, ν)
s.t. λ, µ, νλ, µ, νλ, µ, ν � 0.

(18)

Subgradient method can be used to solve this dual problem.
The updating rules are as follows:

λ(l+1)
n =

[

λ(l)n + δ(l)n

(

∑

c∈K

p̃cn − pmax
n

)]+

, (19)

µ
(l+1)
i =

[

µ
(l)
i + ǫ(l)n

(

Rmin
i −Ri

)

]+

, (20)

ν
(l+1)
j =

[

ν
(l)
j + κ

(l)
j

(

∑

c∈K

∑

i∈NP

R̃c
i,j −

∑

c∈K

R̃c
j,P

)]+

(21)

p̃cn denotes the optimal power allocation for usern, n ∈
N . Following a diminishing step size rule for choosing
δ(l), ǫ(l), κ(l)δ(l), ǫ(l), κ(l)δ(l), ǫ(l), κ(l), the subgradient method above is guaranteed to
converge to the optimal dual variables [12]. The optimal primal
variables can then be easily found.

Observe that, because of the dual decomposition, dual
optimization by subgradient method can be done in adis-
tributed fashion. First, in each iteration, the per-subchannel
problems (12) can be solved simultaneously by the PU of the
subchannel exchanging information with neighboring SUs as
in Subroutine1, though the objective jointly involves PU’s and
SU’s benefits.

Second, subgradient updates can also be distributively per-
formed by each primary and secondary users. The algorithm
can be perceived as an iterative bargaining process. The dual
variable νj is exchanged between PUs and SUs and serves
as a relay price signal to coordinate the level of cooperation.
When the relay traffic demand

∑

c

∑

i R̃
c
i,j from PUs exceeds

the supply
∑

c R̃
c
j,P from j, i.e. PUs over-exploitj, j increases

its relay priceνj for the next round of bargaining to suppress
the excessive demand, as shown in (21). Similarly, ifj has
redundant relay capacity

∑

c R̃
c
j,P >

∑

c

∑

i R̃
c
i,j , it will

decrease the relay priceνj to attract more relay traffic and
therefore obtain more channels to use. The process continues
until it converges to the optimal resource allocation.



The interpretation of other dual variablesλn andµi is also
worth mentioning. For each user,λn is easily understood as
a price signal to regulate its power consumption.µi for each
PU is used to ensure that the resource allocation is individual
rational, i.e. it is beneficial for each PU in that the total
throughput obtained from cooperationRi is larger thanRmin

i .
When Ri < Rmin

i , µi will be increased as in (20), and so
will p̃ci as in (16). Therefore,Rc

i will be larger in the next
iteration. Both dual variables are kept privately and updated
independently with only local information.

Algorithm 1 Optimal Distributed Bargaining for FLEC
1. The primary BS runs a multiuser scheduling algorithm to

determineRmin
i for PUs without cooperation.

2. Each primary user initializesλ(0)i , µ
(0)
i . Each secondary

user initializes both power and relay pricesλ(0)j , ν
(0)
j .

3. Given λ(l), µ(l), ν(l)λ(l), µ(l), ν(l)λ(l), µ(l), ν(l), each PUi coordinates with each
neighboring SUj concurrently to solve the per-subchannel
resource allocation problem (12) usingSubroutine 1.

4. SU j bargains by performing a subgradient update for the
relay priceν(l)j as in (21). PUi updatesµ(0)

i as in (20).

Each user also updates the power priceλ
(l)
n as in (19).

5. Return to step 3 until convergence.
6. Every user updates̄Rn from its total throughputRn in

this epoch. Every PUi updatesR̄min
i from Rmin

i in Step
1. They will be used for resource allocation in next epoch.

The complete bargaining algorithm is shown in Algorithm 1.
Since it optimally solves the dual problem (18), it optimally
solves the primal problem (9) according to Proposition 1.

Theorem 2:The distributed bargaining algorithm as shown
in Algorithm 1 always converges, and when it converges its
solutionoptimallysolves the decentralized resource allocation
problem (9).

We now analyze the amount of message exchanges and
complexity here. For a pair of PU-SU, two messages
νj , b̃j(i, λj , νj) need to be exchanged for eachc. They can
easily be piggybacked in the probing packets from SU to PU to
measure the channel gain, resulting in zero message exchange
overhead. The complexity of solvingK per-subchannel prob-
lems by exhaustive search isO(KNS). The complexity of
the subgradient update is polynomial in the dimension of the
dual problem, which isK. Therefore, the complete algorithm
has complexity polynomial inKNS . While this may render
it infeasible for real-time scheduling within5–10 ms when
the network scales, the distributed nature of the algorithm
makes it possible for each PU toconcurrentlysolve the per-
subchannel problem, reducing the complexity to onlyO(NS).
Also, each user can update their own prices as dual variables
independently. Further, in reality, only a few SUs residingin
the neighborhood of the PU can potentially help and thus have
to be considered. Therefore from the network point of view,
each round of bargaining has complexityO(1).

Careful readers may be concerned with the slow conver-
gence of the subgradient updates, especially when the problem
scales up. We comment that since each PU only needs to
bargain with neighboring SUs, the convergence complexity is

limited by the size of the neighborhood and does not scale up
with the problem size. Also, only scalar dual variables needto
be updated for each user. We observe in simulations in Sec. 6.3
that the algorithm converges within about 20 iterations in most
cases.

4 A CENTRALIZED HEURISTIC ALGORITHM

We now proceed to the centralized setting. Recall that in the
decentralized setting, the subchannel assignment to PUs is
done by the BS without considering the possibility of coopera-
tive transmission, and thus is not part of the optimization.This
enables efficient development of distributed algorithms, but is
sub-optimal in general. Here we consider the scenario where
the SU cooperative transmission becomes an integral part of
primary BS scheduling, and SUs abide by the scheduling
decisions, provided that the resource allocation is fair as
reflected by the NBS fairness. With centralized FLEC, we
have an additional dimension to optimize:global subchannel
assignmentfor both PU and SU.

4.1 Motivation for Developing Heuristics

The problem can be formulated in a similar way as the
decentralized problem (9), and optimally solved via dual
decomposition and subgradient update. However, it is com-
putationally prohibitive to do so. Since the BS can now assign
any subchannel used by any helped PU to any helping SU, at
each iteration, the per-subchannel problem now becomes:

max
i,j,i′,j′,pc

i
,pc

j′
,αc

j′

(

1

R̄i − R̄min
i

+ µi

)

Rc
i,j +

Rc
j′

R̄j′
− λip

c
i

−λj′pcj′ + νj′
(

Rc
j′,P −Rc

i′,j′

)

s.t. Eq. (1)–(4), αc
j′ = {0, 1}

(22)
Compared to the decentralized version (12), there are addi-

tional variablesi, i′, j′ to optimize, which represents the global
subchannel assignment. Specifically,i is the PU assigned to
usec andj is its helping SU, whilej′ is the SU assigned to use
c andi′ is the PU whose data is relayed byj′. Note thati (j)
needs not to be equal toi′ (j′). The solution of this problem
thus has to exhaustively search all possible combinations of
PU-SU pairs for each subchannel, which has a complexity of
O(KN2

PN
2
S) since distributed concurrent optimization is not

possible.
Moreover, because of the global impact of centralized sub-

channel assignment, the speed of convergence of dual variables
λ, µ, νλ, µ, νλ, µ, ν scales up with the size of the dual problem which scales
quadratically withNP andNS , instead of being independent
of the dual problem size as in the decentralized case. Note that
although the convergence of subgradient method is guaranteed,
the speed of convergence is not, and often depends heavily on
problem conditioning and scaling [12]. From our computa-
tional experiences, the convergence of subgradient updates is
too slow to be useful for practical use as will be shown in
Sec. 6.3.

Given that complexity has been significantly increased, we
focus on developing efficient heuristics in this section, which
reduce the complexity while maintaining good performance.



Nevertheless, the slow subgradient based centralized algo-
rithm, calledCentralized Optimization for FLEChereafter, is
used to derive the optimal performance as a benchmark as in
Sec. 6.4.

4.2 Overview of the Heuristic Algorithm
To make the problem more tractable, we decouple it to
three orthogonal dimensions: relay assignment, subchannel
assignment, and power control. First, we derive optimal relay
assignment using bipartite matching, assuming that each SU
is only able to help one distinct PU and one PU can only
be matched to one SU. This simplification is reasonable as it
ensures a certain level of fairness. Then we assume that power
is equally distributed, and derive an subchannel assignment al-
gorithm. Even with optimal relay and equal power assignment,
this turns out to be an NP-hard problem. We propose a sub-
optimal algorithm based on randomized rounding and prove
its approximation ratio. Finally, power allocation is solved to
maximize performance with the given subchannel assignment.
Be reminded that as an initialization step, the BS first performs
a multi-user scheduling [20] to determineRmin

i , R̄min
i for PUs

before the three component algorithms run. The entire heuristic
algorithm is calledCentralized Heuristic for FLEChereafter.

We do not claim that our heuristic design is the only choice
here. In fact other heuristic designs are entirely possible. For
example, one may choose to solve the subchannel assignment
first, then relay assignment, and finally power control. It is
also possible to jointly solve two of the three orthogonal
dimensions. For example one may choose to solve the joint
problem of relay and subchannel assignment and then compute
the power allocation based on the solution of the joint problem.
These possibilities are beyond the scope of this paper and left
as future research, since they have different formulationsand
require different solutions. We do not claim that our heuristic
design is the best, although simulation studies in Sec. 6 show
that it improves performance significantly compared to the
conventional identical channel cooperation.

4.3 Relay Assignment
Here, we model each usern as having animaginarychannel
with a normalized channel gain to noise ratioḡcn = 1

K

∑

c g
c
n

and powerpmax
n . Then the optimal FLEC strategy reduces to

simple time-sharing on this channel. Assuming each SU can
only help one distinct PU and one PU can only be matched
to one SU, the optimal relay assignment under the basic
framework in Sec. 2.3 can be determined by:

max
xi,j∈{0,1}

∑

i∈NP

∑

j∈N+
S

xi,j

(

R̂i,j −Rmin
i

R̄i − R̄min
i

+
R̂j,i

R̄j

)

s.t. R̂i,j =
1

2
min

(

log(1 + 2pmax
i ḡi,j), log(1 + 2pmax

j ḡj,P )
)

,

R̂j,i =
1

2
log(1 + 2pmax

j ḡj)

[

1−
log(1 + 2pmax

i ḡi,j)

log(1 + 2pmax
j ḡj,P )

]+

,

∀i ∈ NP , j ∈ NS ,

R̂i,N+1 = log(1 + pmax
i ḡi), R̂N+1,i = 0, R̄N+1 = ∞.

∑

i∈NP

xi,j = 1, ∀j ∈ NS ,
∑

j∈NS

xi,j = 1, ∀i ∈ NP

xi,j is the binary variable denoting the relay assignment
of SU j to PU i. Thus, for PU i, its overall cooperative
throughputRi,j when matched to SUj is the minimum of
the two hops PU-SU and SU-BS. Wheni choosesj = N +1,
i.e. direct transmission, the throughput is calculated from the
Shannon formula. For SUj, the overall cooperative throughput
Rj,i when matched to PUi is implied from the time-sharing
strategy, since it must relay all primary traffic whenever
possible.
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Fig. 2. Weighted bipartite matching for optimal relay
assignment.

The above relay assignment is a weighted bipartite matching
problem that can be optimally solved. To see this, constructa
graphA = (V1 × V2, E) whereV1 andV2 correspond to the
set of PUs and SUs respectively as shown in Fig. 2. We patch
a void vertex toV2 to incorporate the direct transmission. The
edge setE corresponds toNP (NS + 1) edges connecting all
possible pairs of users in the two vertex sets. Each edge(i, j)
carries a weight,wi,j , where

wi,j =
R̂i,j −Rmin

i

R̄i − R̄min
i

+
R̂j,i

R̄j

.

For edges connecting PUs to the void SU that we patched,
the edge weights have captured the maximum marginal utility
given by direct transmission. Observe thatA is bipartite, op-
timal relay assignment is then equivalent to finding maximum
weighted bipartite matching onA. The Hungarian algorithm
is a popular polynomial-time algorithm to solve it optimally
[23].

4.4 Subchannel Assignment

For PUs using direct transmission as determined by optimal
relay assignment, they do not share resources with SUs, and as
such cannot benefit from SU cooperation. Therefore they use
the same subchannels as allocated in the initialization step. For
the set of PUsNR

P that use cooperative transmission, the set
of their allocated subchannelsKR in the initialization step will
be collected and re-assigned by the following algorithm. For
each PUi and its unique helping SUj(i), we assume they will

use powerp̄i =
pmax
i

Ki
, p̄j(i) =

pmax
j(i)

Ki
respectively on each sub-

channel, whereKi is the number of subchannels allocated toi
in the initialization step [20]. Such an equal power assumption
is widely used and leads to subchannel assignment algorithms
with near-optimal performance, as reported extensively [20],
[24] and will be shown in Sec. 6.4.

The subchannel assignment problem can be formulated as
in (23): wherewc1

i,j(i) denotes the marginal utility (normalized
to a large valuewmax) obtained by PUi on being assignedc1



on PU-SU link in the first time slot (i.e.wc1
i,j(i) = 0.5 log(1+

2p̄ig
c1
i,j)/(R̄i−R̄

min
i )), andwc2

j(i),P denotes the marginal utility
of assigningc2 for j(i) on SU-BS link in the second slot (i.e.
wc2

j(i),P = 0.5 log(1+2p̄j(i)g
c2
j(i),P )/(R̄i− R̄min

i ). wc2
j denotes

the normalized marginal utility of SUj on being assignedc2
for its own data0.5 log(1+2p̄jg

c2
j )/R̄j , andai, bj denote the

aggregate marginal utility (flow) achieved by PUi and SUj
respectively.xc1i is the binary variable denoting whetherc1 is
assigned to PUi in the first time slot,yc2i denotes whetherc2
is assigned toi’s helper SUj(i) for relaying in the second
time slot, andyc2j denotes whetherc2 is assigned to SUj for
its own transmission in the second time slot.

max
x
c1
i

,y
c2
i

,y
c2
j

∑

i∈NR

P

ai +
∑

j∈NS

bj (23)

s.t.
∑

c2∈KR

yc2j · wc2
j = bj , ∀j ∈ NS ,

∑

c1∈KR

xc1i · wc1
i,j(i) = ai,

∑

c2∈KR

yc2i · wc2
j(i),P = ai, ∀i ∈ NR

P ,

∑

i∈NR

P

xc1i = 1,
∑

i∈NR

P

yc2i +
∑

j∈NS

yc2j = 1, ∀c1, c2 ∈ KR,

Theorem 3:The subchannel assignment problem under the
above IP formulation is NP-hard.

Proof: The problem can be reduced from type-dependent
multiple knapsack problems (MKP), where each set of knap-
sacks (users) belongs to a different type (time slot and pri-
mary/secondary). The profit of allocating an item (subchannel)
depends not only on the knapsacks but also the type of them.
The one-type MKP is known to be NP-hard and even hard to
approximate [25]. Therefore our problem is NP-hard.

Given the hardness of the problem, we present a rounding
based algorithm to solve it as shown in Algorithm 2. It ensures
that each subchannel is assigned to at most one user for both
slots. We now capture the performance of the algorithm.

Theorem 4:Algorithm 2 provides an approximation ratio

of 1 −
√

4cNS

KR ln (KR) with high probability, whereKR is

the cardinality of the subchannel setKR.
Proof: Refer to the Appendix in the supplementary ma-

terials for a detailed proof.
Therefore, its performance becomes better when there is a

larger magnitude of available subchannels to users in the sys-
tem. Since the number of subchannels in a practical OFDMA
system is much bigger than that of users, Algorithm 2 can be
expected to provide good performance.

4.5 Power Control

After all the subchannels are allocated as above, power can
be allocated to each user optimally. For PUs with direct
transmission, optimal power allocation is a simple water-filling
solution. For PUs with cooperative transmission, optimal
power allocation is performed on a per-pair basis with their
unique helping SUs. With subchannels allocated and their use
on an SU determined, power allocation on each pair of PU-SU
is a standard convex optimization problem and can be readily
solved by KKT conditions. We omit the details here.

Algorithm 2 Rounding-based Subchannel Assignment
1. Formulate the problem using the IP above. Solve its LP

relaxation withxc1i , y
c2
i , y

c2
j being relaxed to[0, 1]. Let the

LP solutions bêxc1i , ŷ
c2
i , ŷ

c2
j and âi, b̂j .

2. Adopt the following procedure to round the fractional
solutions, x̂c1i , ŷ

c2
n , to integral values,x̃c1i , ỹ

c2
n , where

n ∈ {i ∈ NR
P } ∪ {j ∈ NS}.

• For everyc2, round yc2n to 1 (ỹc2n ) with probability
ŷc2n . If ñ is the user to whomc2 is assigned, then
ŷc2n = 0, ∀n 6= ñ.

• Updateãi =
∑

ỹ
c2
i

w
c2
j(i),P

1−δ
, b̃j =

∑
ỹ
c2
j

w
c2
j

1−δ
, whereδ is

a constant derived in the Appendix. Run the LP again
on xc1i only. Let x̄c1i be the solutions of the new LP.

• For c1, roundxc1i to 1 (x̃c1i ) with probability x̄c1i . If
ĩ is the PUc1 is assigned to, theñxc1i = 0, ∀i 6= ĩ.

5 IDENTICAL CHANNEL COOPERATION

In previous sections, we have addressed the resource allocation
problem with FLEC in both decentralized and centralized
settings. In this section, we present solutions for resource allo-
cation with conventional identical channel cooperation (CC),
which makes our analysis complete. The motivation to study
CC here is that it can serve as the performance benchmark
for our flexible channel cooperative scheme. Also, due to
implementation and complexity considerations, FLEC may not
be feasible in certain scenarios, whereas CC is comparatively
easier to implement due to its simplicity. Similar to FLEC, we
also consider both decentralized and centralized CC.

5.1 Decentralized CC

5.1.1 Problem Formulation
Scheduling and resource allocation of decentralized CC can
be similarly formulated as that of FLEC in Sec. 3.1. The
key difference is that, the per-subchannel flow conservation
constraints need to be satisfied for each subchannel, instead
of only total flow conservation (5) for FLEC. Mathematically,

∑

i∈NP

Rc
i,j ≤ Rc

j,P , ∀j ∈ NS , c ∈ K. (24)

In addition, we have the following for the time sharing
strategy:

αc
j ∈ [0, 1), ∀c ∈ K, j ∈ NS (25)

instead ofαc
j = {0, 1} for FLEC. αc

j 6= 1 sincej must relay
in CC. The problem can then be presented as:

max
R,P,ααα

∑

i∈NP

Ri −Rmin
i

R̄i − R̄min
i

+
∑

j∈NS

Rj

R̄j

s.t.P · 1T � pmax,R � Rmin, (1)− (4), (24)− (25). (26)

From an intuition level, CC has more flexible time shar-
ing strategy, but requires the relay transmission to be on
the identical subchannel. FLEC is more flexible in terms
of channel sharing strategy for cooperative transmission,but
the time sharing strategy is restricted. From an optimization
point of view, CC hasNSK per-subchannel flow conservation



constraints, while FLEC only hasNS total flow conservation
constraints, whereNS is the number of SUs andK the number
of subchannels as in Sec. 2.1. Given thatK is typically on
the order of hundreds in a practical OFDMA system, CC
formulation has far more constraints than FLEC. Because these
flow conservation constraints directly impact SU’s throughput
for relay and its own transmission as shown in (3), they
are active constraints that directly impact the optimization
objective. Thus, it is not a surprise that FLEC outperforms
CC in both decentralized and centralized settings, as we will
show in Sec. 6.

In general, (26) can also be solved in the dual domain
by taking advantage of convexity through frequency sharing
in OFDMA networks. The same set of techniques, including
dual decomposition, exhaustive search for the per-subchannel
problems, and subgradient method to update the dual variables,
can be applied in the same way as in Sec. 3.2. However,
due to the per-subchannel flow constraint, a different dual
decomposition technique is used to efficiently achieve the dual
optimum via the subgradient method, making the analysis
different. We show the differences in details in the following.

5.1.2 Dual Decompsition
Recall in the decentralized FLEC problem (9), we relax power,
flow, and individual rationality constraints, so they can bede-
coupled into per-subchannel constraints, and the dual variable
updates can be understood as coordinating these constraints
such that, when combined together, they are satisfied at the end
of the process. In the decentralized resource allocation problem
of CC (26), the flow constraint is already in the decoupled
form to be satisfied for each subchannel. Thus, we only need
to relax the total power and individual rationality constraints.

As discussed, the Lagrangian can be written as:

L(R,P,α, λ, µα, λ, µα, λ, µ) =
∑

i∈NP

Ri −Rmin
i

R̄i − R̄min
i

+
∑

j∈NS

Rj

R̄j

+
∑

n∈N

λn

(

pmax
n −

∑

c∈K

pcn

)

+
∑

i∈NP

µi

(

Ri −Rmin
i

)

. (27)

The dual function is

g(λ, µλ, µλ, µ) =

{

max
R,P,ααα

L(R,P,α, λ, µα, λ, µα, λ, µ)

s.t. (1)− (4), (24)− (25),
(28)

By expanding the termRi, Rj , ignoring constant terms, and
realizing that each subchannel is already assigned to a PU, the
per-subchannel problem can be written as

max
j,pc

i
,pc

j
,αc

j

Rc
i,j

R̄i − R̄min
i

+ µiR
c
i,j +

Rc
j

R̄j

− λip
c
i − λjp

c
j

s.t. (1)− (4), (25), Rc
i,j ≤ Rc

j,P , i = F (c)

(29)

wherei is the primary user of subchannelc determined by the
conventional multiuser scheduling denoted asF (·) : K → NP .

5.1.3 Solutions to the Per-subchannel Problem
Exhaustive search can also be used to solve the per-subchannel
problem, as in Sec. 3.3. As we have seen, to enable such search

we need to derive optimal solutions̃pci , p̃
c
j , α̃

c
j under direct

and cooperative transmission modes for any combination of
subchannelc with its PU i and the SUj. Readily we can
see that for direct transmission, the optimal solutionp̃ci is the
same as in (14). However, for cooperative transmission, the
derivations are different from the previous analysis.

The first observation is that, maximization of the problem is
achieved with the inequality of the flow conservation constraint
achieved as equality. This can be easily verified by observing
that increasingRc

j,P any further beyondRc
i,j will not increase

the utility of PUi. On the other hand, it will decrease the utility
of SU j in the objective function, sincej will inevitably have
less resources to improve its own throughput.

With this observation, and by substituting the rate formulas
(2)–(3), we need to solve the following:

max
pc
i
,pc

j
,αc

j

(

1

2(R̄i − R̄min
i )

+ µi

)

log(1 + 2pcig
c
i,j)− λip

c
i

+
αc
j log(1 + 2pcjg

c
j)

2R̄j

− λjp
c
j

s.t.
log(1 + 2pcig

c
i,j)

2
=

(1− αc
j) log(1 + 2pcjg

c
j,P )

2
,

αc
j ∈ [0, 1). (30)

Essentially, this is a constrained non-linear maximization with
respect to two variables with standard solution methods. But
it turns out quite difficult to obtain a closed form solution.We
resort to numerical methods to obtain solutions efficiently.

The entire procedure to solve the per-suchannel problem for
CC thus can be summarized as follows:

Subroutine 2:Exhaustive search for solving (29) for a given
subchannelc and its PUi:

• Solve for p̃ci using (14) for direct transmission.
• Contact each neighboring SUj to obtain λj , gcj and
R̄j . Solve the joint utility maximization problem (30)
numerically to get optimal̃pci , p̃

c
j , α̃

c
j for each j. Then

find the optimal̃j that maximizes the joint utility.
• Choose the transmission mode with larger utility.

Output the corresponding optimal resource allocation
j̃, p̃ci , p̃

c
j , α̃

c
j .

The complete resource allocation for CC, denoted asDis-
tributed Bargaining for CC, is shown in Algorithm. 3.

Algorithm 3 Distributed Bargaining for CC
1. The primary BS runs a multiuser scheduling algorithm to

determineRmin
i for PUs without cooperation.

2. Each user initializes its power priceλ(0)n . Each PU initial-
izes the dual variableµ(0)

i .
3. Givenλ(l)λ(l)λ(l), each PUi solves the per-subchannel resource

allocation problem (29) usingSubroutine2.
4. Each usern bargains by performing a subgradient update

for the priceλn as in (19). Each PUi also updatesµi as
in (20).

5. Return to step 3 until convergence.
6. Every user updates̄Rn from its total throughputRn in

this epoch. Every PUi updatesR̄min
i from Rmin

i in Step
1. They will be used for resource allocation in next epoch.



5.2 Centralized CC

Finally we consider resource allocation of centralized CC,
which takes into account subchannel assignment to PUs and
SUs. By the same argument as in Sec. 4, our focus is on
developing efficient heuristics with short running time. Wefol-
low the same approach in developingCentralized Heuristics
for FLEC and divide the problem into three dimensions, i.e.
relay assignment, subchannel assignment, and power control.
Readily we can see that the same relay assignment algorithm
based on maximum weighted bipartite matching can be used
here, since we would have an exactly the same problem for-
mulation with only total flow conservation constraints, when
all the channels are combined to form an imaginary channel
as in Sec. 4.3. It is also straightforward that optimal power
allocation follows the famous water-filling solution, given the
relay and subchannel assignment. The only difference then lies
in solving the subchannel assignment, which turns out to be
much easier. The entire algorithm is referred to asCentralized
Heuristics for CC thereafter.

5.2.1 Subchannel Assignment

As in Sec. 4.4, we only consider the set of PUsNR
P that

are assigned with an unique helping SU each. Their allocated
subchannelsKR in the initialization step is re-assigned by
the channel assignment algorithm. The same assumptions are
inherited, that each PUi and its unique helping SUj(i) use

equal powerp̄i =
pmax
i

Ki
, p̄j(i) =

pmax
j(i)

Ki
respectively on each

subchannel, whereKi is the number of subchannels allocated
to i in the initialization step.

From the per-subchannel flow conservation constraint (24),
optimal time sharinḡαc

j(i) can be uniquely determined under
equal power allocation̄pi, p̄j(i) on each subchannel. Specifi-
cally, from (24),

ᾱc
j(i) = 1−

log
(

1 + 2p̄ig
c
i,j(i)

)

log
(

1 + 2p̄j(i)g
c
j(i),P

) , ∀c ∈ KR (31)

whenc is allocated toi, j(i). Thus the corresponding optimal
utility uc

i,j(i) is simply

uci,j(i) =
log
(

1 + 2p̄ig
c
i,j(i)

)

2(R̄i − R̄min
i )

+
ᾱc
j(i) log

(

1 + 2p̄j(i)g
c
j(i)

)

2R̄j(i)
(32)

The subchannel assignment problem can be casted as:

max
xc
i

∑

c∈KR

∑

i∈NR

P

xciu
c
i,j(i)

s.t.
∑

i∈NR

P

xci = 1, ∀c ∈ KR

The constraint is such that each subchannel is only allocated
to one pair of PU-SU. This can be easily solved by assigning
each subchannelc to a PUi that has the largestuc

i,j(i). That
is, ĩc = argmaxi∈NR

P

uc
i,j(i).

5.3 Discussions

Through the analysis in this section, we can see that our
NBS resource allocation framework is readily applicable to
identical channel cooperation. In general, CC makes the prob-
lem easier to solve compared to that with FLEC. The reason
is the straightforward time sharing cooperation strategy that
simplifies the scenario and reduces the degrees of optimization
freedom. However, optimality is sacrificed simply because
time sharing accounts for only a subset of all possible coop-
eration strategies under FLEC, as we have already seen from
the analysis and will be verified in the simulation studies in
the next secion.

6 PERFORMANCE EVALUATION

To evaluate the performance of FLEC with the proposed
resource allocation algorithms, we adopt empirical parameters
to model the fading environment. There are 128 subchannels
centered at 2.5 GHz, each with 312.5 kHz bandwidth. Chan-
nel gain can be decomposed into a large-scale log normal
shadowing component with standard deviation of 5.8 and
path loss exponent of 4, and a small-scale Rayleigh fading
component. The inherent frequency selectivity is capturedby
an exponential power delay profile with delay spread 1.257
νs as reported via extensive measurements [26]. The entire
40 MHz channel is partitioned into blocks of size equal to the
coherence bandwidthBc ≈ 795.6 KHz. Three independent
Rayleigh waveforms are generated for each block using the
modified Jakes fading model and a weighted sum is taken to
calculate the SNR. A scheduling epoch is of 5 ms duration,
and an evaluation period consists of 1000 scheduling epochs.
The number of PUs is set to 60, and the number of SUs varies.
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Fig. 3. Overall throughput performances. The first three
bars represent PU throughput, and the last three bars
represent SU throughput.

6.1 Overall performance of FLEC

We first evaluate the overall performance of distributed and
centralized FLEC compared with conventional identical chan-
nel cooperation (“CC” in the figures). We useCentralized
Heuristic for CC to derive CC performance as the benchmark



here. In Fig. 3, we plot the average throughput of both
PUs (first three bars) and SUs (last three bars). We can
see thatDistributed Bargaining for FLECand Centralized
Heuristic for FLEC as in Sec. 3-4 provide 20–40% and 30–
60% improvement, respectively. It clearly demonstrates the
advantage of FLEC. A similar trend is also observed for SUs,
although the improvement becomes marginal when the number
of SUs scales up. The reason is that, though a larger number
of SUs provides more and better cooperation for PUs and thus
improves their throughput, it results in fewer channels leased
to each SU, and a lower degree of optimization freedom.
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Fig. 4. Effects of topology on PU throughput improve-
ment.

6.2 Effects of Topology

Next we investigate the effects of topology on FLEC. We
chooseDistributed Bargainingas the representative algorithm,
and evaluate three representative topologies, whereNS equals
40 and the average distance from PU to BS is controlled to
be 0.8, 0.65, and 0.5 of the cell radius (topology 1, 2, and 3
respectively). We observe from Fig. 4 that while cooperation
always results in some improvement in PU throughput, scenar-
ios dominated by high path loss and poor shadowing benefit
the most (topology 1), as more cooperation opportunities can
be explored. SU’s throughput also becomes better in these
scenarios, which we do not show here due to space limit.
This observation justifies the deployment of SU cooperation
for throughput enhancement in primary networks with high
path loss and limited coverage.

6.3 Practicality of FLEC algorithms

In this section we are concerned with the practicality of the
FLEC algorithms. First, we study the convergence of our
distributed algorithm for decentralized FLEC. Fig. 5 shows
the convergence ofDistributed Bargainingfor two randomly
chosen PUs with different number of neighboring SUs. It
is clear that the distributed algorithm converges within 20
iterations, validating its feasibility in practice. The reason for
the fast convergence, as discussed in Sec. 3.4, is mainly the
limited size of neighborhood. With distributed and concurrent
operations, it is indeed suitable for practical implementation.
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Fig. 5. Convergence of the algorithms (NS = 50).

TABLE 1
Running time of component algorithms in Centralized

Heuristic for FLEC.

Component algorithm Ave. running time (ms) Min. Max.
relay assignment 0.34 0.32 0.35

subchannel assignment 0.26 0.2 0.29
power allocation 0.19 0.17 0.2

We then study the algorithms for the centralized problem.
We first observe thatCentralized Optimization for FLECdoes
not converge even after 1000 iterations in Fig. 5. This echoes
our concern about the complexity of centralized subgradient
update of two vector dual variables in Sec. 4, and justifies our
motivation to design efficient heuristics.

To understand the practicality ofCentralized Heuristic, we
observe the running time of its component algorithms in
our simulations. Table 1 summarizes the average as well
as the minimum and maximum running time of the three
component algorithms. We can see that all of them are on
the order of milliseconds on an Intel Xeon Quad-core CPU
running at 3 GHz with 2 GB memory and without any multi-
threading. Therefore the usual scheduling deadlines of 5–
10 ms [6] can be satisfactorily met. Through the discussions
here, we summarize that both theDistributed Bargainingand
Centralized Heuristicare practical in terms of running time.

6.4 Near-optimality of Centralized Heuristic

We now evaluate the performance loss ofCentralized Heuristic
compared with that ofCentralized Optimization. Recall that
Centralized Optimizationis developed via the same method-
ology of dual decomposition and subgradient update as used
in Distributed Bargainingin Sec. 4. As seen from Fig. 6, with
respect to the average throughput of both PU and SU,Central-
ized Heuristiclosses about 5% in all cases. We also evaluate
the performance loss with different values ofpmax

i , and find
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Fig. 6. Near-optimality of Centralized Heuristic.

that the gap widens whenpmax
i decreases. The reason is that

our subchannel assignment is based on the assumption of equal
power allocation, which becomes invalid whenpmax

i is small,
and affects the performance of ourCentralized Heuristic.
Numerical details are not presented because of limited space.
Due to slow convergence ofCentralized Optimization, we may
conclude thatCentralized Heuristicachieves a good tradeoff
between performance and complexity, and is amenable to
practical implementations.

7 RELATED WORK

A plethora of work has been done on spectrum sharing
based on cognitive radio [2]. Generally, they fall into three
paradigms,interweave, underlay, andoverlay [27]. The inter-
weave paradigm insists that SUs should only transmit when
PUs are not, while the underlay paradigm allows SUs to trans-
mit concurrently with PUs provided that their signals do not
cause harmful interference. Essentially, in both cases SUsare
transparent to PUs. Theoverlayparadigm, which is the focus
of this paper, assumes PUs have side information about SUs,
and leverages them to improve primary network performance.
However, most existing works focus on information theoretic
analysis [28].

In networking literature, [4] first proposes the idea of co-
operative cognitive radio network, where the secondary users
can earn spectrum access in exchange for cooperation with
the primary user. A Stackelberg game is formulated where the
primary user acts as the leader and determines the optimal
time sharing strategy in maximizing its transmission rate.[5]
considers a slightly different setting where the traffic demand
of primary user is taken into account, and the utility function
includes a revenue component from secondary users. [29]
considers the game of one PU and multiple SUs in which the
PU decides the portion of access time and the SU decide the
relay power level. In [30] a priority queueing system model is
developed, and in [16] a credit-based spectrum sharing scheme
is studied for cooperative cognitive radio network. These work
adopt a single shared channel setting with a single primary
user and an ad-hoc network of secondary users. On contrary,
in this paper we consider a multi-channel setting where the
OFDMA based primary and secondary networks co-locate,

which represents a more practical network scenario and has
not been considered before.

Resource allocation with cooperative diversity has been
extensively studied in general wireless networks [31]–[33].
Specifically, our paper is more related to work in cognitive
radio or cooperative OFDMA networks. For the former, most
work [34]–[36] consider maximizing SUs’ throughput with
constrained interference to PUs. In other words, they all con-
sider the underlay paradigm. For the latter, most related toour
work are [13] and [14]. [13] addresses the problem with a joint
consideration of relay assignment, channel allocation, relay
strategy optimization, and power control. Our previous work
[14] considers the problem with a novel network coding based
cooperation strategy, and proposes approximation algorithms
with performance guarantees. Compare to these work, we
consider the performance of primary and secondary users
jointly, and apply the concept of Nash bargaining solutions
[10] to ensure both parities benefit from cooperation fairly.

The application of Nash bargaining to multi-criteria op-
timization is not new in the networking field. [37] applies
it to ensure fairness in a network flow control problem.
Kelly in the seminal work [11] has also shown that Nash
bargaining ensures proportional fairness in a TCP setting.NBS
has been also applied to allocate resources in cooperative
OFDMA networks [18], [19]. These works do not consider
the inefficiency of conventional cooperation methods in the
context of multi-channel CCRN, and only heuristics without
any performance bounds are given. Finally, our conference
version of this paper [1] does not study the identical channel
cooperation in details.

8 CONCLUDING REMARKS

This work represents an early attempt to study OFDMA
cooperative cognitive radio networks. The central question
addressed is how to effectively exploit secondary user co-
operation when conventional cooperation method becomes
inefficient in this scenario, which has not yet been explored.
We propose FLEC, a flexible channel cooperation design to
allow SUs to customize the use of leased resources in order to
maximize performance. We develop a unifying optimization
framework based on Nash bargaining solutions to address
the resource allocation problem with FLEC, where relay as-
signment, subchannel assignment, relay strategy optimization
and power control intricately interplay with one another. An
optimal distributed algorithm as well as an efficient centralized
heuristic with near-optimal performance are proposed. We also
extend our framework to consider resource allocation with
conventional cooperation.
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