
A Three-Dimensional Data Model in HBase for Large Time-Series Dataset Analysis

Dan Han, Eleni Stroulia
Department of Computing Science

University of Alberta
Edmonton, Canada

{dhan3, stroulia}@cs.ualberta.ca

Abstract—In the transition of applications from the tra-
ditional enterprise infrastructures to cloud infrastructures,
scalable database management system plays an important role
in efficiently managing and analysing unprecedented massive
amount of data. Compared to RDBMSs, NoSQL databases,
are more attractive in addressing this challenge. However, it
is not easy to manage data in NoSQL database effectively
for non-expert users because of the rare data-organization
support. A poor data organization may accidentally abuse the
features of NoSQL database and achieve unsatisfactory perfor-
mance. Therefore, a systematic method for NoSQL database
data-schema design is a timely and important problem for
researchers and practitioners.

HBase, as a particular NoSQL database offering, relies (a)
on HDFS, for its distributed and replicated storage, and (b) on
coprocessors, for efficient parallel query processing. To harness
the potential parallelism benefits, an appropriate partitioning
of the data across the HBase storage is required. we investigate
the effectiveness of the three-dimensional data model, which
uses the “version” dimension of HBase to store the values of
a data item over time. We have experimented and evaluated
the performance impact of this type of data model with two
data sets, of different sizes and different time lengths. For
each of these data sets, we have compared the performance of
several ad-hoc queries, implemented with HBase Coprocessors
framework, across different data schemas, some of which (do
not) use the third HBase dimension. The experiment results
demonstrate improved performance with the data schemas that
use the third dimension of HBase.

Keywords-Data Model; Data Schema; Time-Series Dataset;
HBase; Coprocessor

I. INTRODUCTION

Cloud Computing, is attracting business owners for the
perceived benefits, such as the elasticity of the fluctuating
load, the access to large pools of data and computational
resources, and the reduced operational costs compared to
running in enterprise data centres. Given the advantages
of the Cloud, some enterprises have been working on the
cloud-based application development and deployment.[1].
The majority of applications deployed in the cloud include
some of the traditional and emerging cloud-based appli-
cations, such as social networking, online shopping, and
real time instrumented data processing [2]. Low latency and
high availability of service, and excellent system scalability

are required for such applications, as the data generated in
these applications are growing monotonously over time [2].
Therefore, large-scale ad-hoc analytical processing of the
time-series data collected from those cloud-based applica-
tions is becoming increasingly valuable to improving the
quality and efficiency of existing services, and discovering
the knowledge.

Moreover, the success of this movement necessitates a
design of scalable database management system which can
effectively and efficiently organize and manage the massive
amount of data[1]. As of the open source relational DBMSs
with the shortage of cloud features, and a commercial
solution which requires expensive cost, RDBMSs are less
attractive than the NoSQL database [1]. NoSQL databases,
a non-relational distributed database system, usually avoids
join operations, typically scales horizontally, does not ex-
pose a SQL interface and may be open source [3]. It can
be categorized into four types: Key-value stores, Column
Family stores, Document stores and Graphic databases[4].
In comparison to relational databases, NoSQL databases

• enable the storage of big data, in the order of row key;
• scale horizontally across storage nodes relatively easily;

and
• do not provide much data-organization and language

support.
This last property is of particular interest to us in the work
described in this paper. Data in Column Family stores, for
example, is stored in an “unstructured” manner, based on
a primary key and attributes organized in column families.
There is no notion of “normalization” and redundancy is
allowed for the sake of convenience and efficiency. Given
this new and different storage model, the community has not
yet formulated any systematic methods for how to actually
design the structure of the “BigTables”. However, the data
organization has a great impact on the performance of
the queries implemented on these tables, and therefore, an
appropriate data-schema design is a critical part in software
developments. Moreover, as various data sets are generated
from different applications in which data schemas cannot
be shared, researchers and practitioners have to devote lots
of time to do experiments with different data organization
and management before they have confidence in deploying

978-1-4673-3001-5/12/$31.00 c© 2012 Crown

2012 IEEE 6th International Workshop on the Maintenance and Evolution of Service-Oriented and Cloud-Based Systems (MESOCA)

47

them into product line. Therefore, a systematic method
for NoSQL database data-schema design is a timely and
important problem for researcher and practitioners.

HBase is a particular implementation of Column Family
stores in the Hadoop project. The basic data storage unit
in HBase is a cell, which is specified with the row id,
column-family name, column name and the version [5]. This
last element of the cell identifier implies that each HBase
cell can have multiple versions of a particular data item.
This is a particularly interesting property, with important
implications for the task of managing time-series data. In
relational databases, the values of a data element over
time would, most likely, be stored in individual rows, with
one of the columns dedicated to the element identifier.
Adopting a similar structure in HBase, as would be likely if
a developer followed their SQL schema-design knowledge
and experience, would ignore this particular HBase property.

In the experiments described in this paper, we explore
a three-dimensional data model for data-organization in
HBase, for managing large time-series datasets. This data
model exploits the version dimension in HBase. Instead
of creating independent rows for each data element in the
time series, we associate the version element of the HBase
cell identifier with each subsequent data-element value in
the series. In cases where the time-series data advances
indefinitely, we define a period, as the maximum number
of versions to be “stacked” on the same cell. For example,
given an hourly (daily, or monthly) period, all versions of
the same data element within an hour will be stacked on
the same cell, sharing the same identifier prefix but each
one with its unique version identifier; a different row will
be created for each distinct hour that values of this data-
element are collected.

We have empirically evaluated the performance implica-
tions of this data organization with two time-series data sets:
the Cosmology dataset [6], produced by a simulation, and
the Bixi dataset [7], reporting the availability of shareable
bicycles across Montreal. We found using this type of three-
dimensional data schemas in HBase, as opposed to the
SQL-inspired two-dimensional data schemas, better query-
execution performance can be obtained.

This paper makes two contributions. First, we proposed
a three-dimensional data model which uses the HBase cell-
identifier “version” as the third dimension along which to
store time-series data. This model effectively increases the
amount of data that is stored in a single row, and as a
result, the data becomes distributed well across the HBase
regions in the cluster. Second, through an empirical study,
we investigated different ways of storing versioned date
and their performance implications. The version dimension
makes the data organization like a slice which is composed
by rows and columns. This type of data organization is
efficient in finding the similarity and dissimilarity between
versions. The experiments results suggest that the depth of

the version dimension has close relations with the types of
queries and the software and hardware configurations.

The rest of the paper is organized as follows. Section
II reviews the background and related work in this area.
Section III introduces the data models for time-series data,
which is instantiated in the dataset domains in Section
IV. Section V compares and evaluates the ad-hoc queries
performance under different data schemas for the particular
datasets. We discuss four extended issues and explicate how
to apply the three-dimensional data model into a given
application in Section VI. We conclude our contributions
and future work in Section VII.

II. BACKGROUND AND RELATED RESEARCH

HBase uses the Hadoop File System (HDFS) as its
underlying data storage platform. As we have mentioned
in Section I, the basic data storage unit in HBase is a
cell, which is identified with the row id, column-family
name, column name and the version [5]. Each cell can
have multiple versions of data. At the physical level, each
column family is stored contiguously on disk and the data
is physically sorted by row id, column name and version.

It is important to note here that the version dimension
is used by HBase for time-to-live (TTL) calculations [5].
Column families may be associated with a TTL length, and
HBase will automatically delete rows once the expiration
time is reached. This applies to all versions of a row - even
the current one [5]. The maximum and minimum number of
row versions can be configured per column family. Excess
versions are removed during major compactions. It is not
recommended to set the maximum number of versions to
an extremely high level unless those old values are very
important to you because this will greatly increase the size
of the stored files. This recommendation is relevant when
the version identifier is used to support concurrency control.
However, it can also be used as another dimension along
which to store data, in the case of large data sets, when there
are seldom concurrent-operation conflicts. HBase distributes
data according to row-key ranges; as a result, each HBase
region server is responsible for handling the requests for a
specific range of row keys. This storage principle implies that
range queries are handled efficiently, because neighboring
keys are very likely stored on the same server [8].

The HBase Coprocessor framework, inspired by Googles
BigTable coprocessors [9], provides a library and run-time
environment for executing user-level code within HBase re-
gion servers [10]. It decreases the communication overheads
involved with the transfer of data from the region servers to
the client, and enables dramatic performance improvement
by pushing the computation up to the server, where it can
operate on the data directly. As a data-centric programming
model [11], it significantly improves the system performance
by enabling parallel query processing. To reap the benefits
of this framework, an appropriate partitioning of the data

2012 IEEE 6th International Workshop on the Maintenance and Evolution of Service-Oriented and Cloud-Based Systems (MESOCA)

48

is necessary, which implies a well designed data schema.
This is the reason why, in our work, we have focused in
investigating the impact of different HBase table schemas on
the performance of query execution using the Coprocessors
framework.

The idea that organizing time-series data into “buckets”
corresponding to periods has already been subject of some
research. OpenTDSB [12] is a distributed scalable time-
series database, written on top of HBase. OpenTDSB offers
a data model designed to support data locality and, thus,
obtain good query-execution performance. A similar data
organization has been applied to Cassandra [13], where time-
series data were stored as JSON objects, organized into
hourly, daily and monthly buckets. This data organization
could give the best query performance when each bucket
contained no more than a few tens of data points.

The above studies examine the same problem as we
do in this paper; however the data models they employed
consist of two dimensions only. In our three-dimensional
data model, the evolution of the data over time is organized
and stored in the version dimension, instead of the column
dimension which is used in OpenTSDB, and the special data
model in Cassandra. Benefiting from the third dimension,
our data model enables the storage of the data-element
details in the table columns, instead of “wrapping” complex
data into a JSON object.

III. THREE-DIMENSIONAL DATA MODEL

In this paper, we use the term “data model” to denote
an abstraction of the HBase table design, and the term
“data schema” as a specific case of the data model for a
particular data set. Typically, a relational data schema is
described as a two-dimensional table of rows and columns.
In this setting, a value can be viewed as a data point in the
two-dimensional space. We call this a two-dimensional data
model. By analogy, in our three-dimensional data model,
each value can be viewed as a point in a three-dimensional
space, defined in terms of rows, columns and versions.

Table I describes the differences between two-dimensional
data model and three-dimensional data model in HBase. The
data point in two-dimensional data model can be expressed
by the row and the column. The version dimension is present
but is only used to indicate that the data is up-to-date. So
the sequence id of a particular value in the time series has
to be stored as a part of row key. The data point in the
three-dimensional data model can be expressed by the row,
column and version intuitively, with the version dimension
representing the sequence id, which may be monotonically
increasing timestamps (for continuously recorded real-time
data, for example) or “snapshot identifiers” for ad-hoc se-
quence data. In this three-dimensional data model, the row
key corresponds to a unique identifier for each data element
and each column should be used to store some of the data
propertie(s).

Table I
TWO-DIMENSIONAL AND THREE-DIMENSIONAL DATA MODELS

Data
Model Row Column Version

2D unique Id-timestamp varying properties current time
3D unique Id varying properties timestamps

In general, there are a few basic guidelines for designing
a data schema for storing a particular data set on HBase.

• The row key should be as short as possible, because it
is stored in every cell in that row [5]; a longer row key
will effectively result in much wasted space.

• In order to fully utilize the potential of coprocessors,
one has to aim for organizing the data in a way that
makes the processing of the most frequent queries
“local”. And as HBase sorts the row keys in lexico-
graphic order, one should aim at constructing row keys
by combining those data-element properties that are
usually used to “select” elements of interest. Taking
into account the need to keep row key short, one has to
balance the trade-off between the row-key length and
the number of attributes it combines.

• The various columns should be used to represent the
data-element properties whose values change over time.
The column name should be kept as short as possible,
for the same reason as the row-key should be kept short.
It is better to have few column families and columns.
In our experiments, we have limited the number of
families to one and, in general, no more than a few
tens of columns are appropriate.

• Finally, we propose that the version dimension should
be used to store the time dimension. It should be
designed as a time bucket, but the length of the bucket
cannot be too long. It is determined by the size of
the unit of the data and the hardware resources where
HBase runs on.

IV. CASE STUDY

A. The Datasets

The Cosmology Dataset [6] is produced by an N-Body
simulation of the universe evolution. In the simulation, the
universe is represented by a set of particles. There are three
varieties of particles: dark matter, gas, and stars. All particles
are points in a 3D space and their evolution is simulated over
a series of discrete timestamps. Every few timestamps, the
simulator generates a snapshot of the state of the simulated
universe. Each snapshot records all properties of all particles
at the time of the snapshot [6]. We used the “cosmo50” data
set, which consists of 321,065,547 particles from 9 snapshots
with a total size of around 14 GB in binary format.

The Bixi Dataset [7] is a public dataset collected by
a bicycle-renting service in the city of Montreal. Users
subscribing to the service, can borrow a bike from a station

2012 IEEE 6th International Workshop on the Maintenance and Evolution of Service-Oriented and Cloud-Based Systems (MESOCA)

49

Table II
EXAMPLES OF THE THREE DATA SCHEMAS FOR THE COSMOLOGY DATASET

(a) Data Schema 1
sid-type-pid pp:px ... pp:vx ... pp:eps pp:mass

24-2-33554444 -0.434413 ... -0.349134 ... 4.0E-5 5.29952E-10
...

84-2-33554500 -0.142892 ... 0.0776743 ... 4.0E-5 5.29952E

(b) Data Schema 2
type-pid pp:px:v ... pp:vx:v ... pp:eps:v pp:mass:v

2-33554444 [-0.434413,...] [...] [-0.349134,...] [...] [4.0E-5,...] [5.29952E-10,...]
... [...] [...] [...] [...] [...] [...]

2-33554500 [-0.142892,...] [...] [0.0776743,...] [...] [4.0E-5,...] [5.29952E,...]

(c) Data Schema 3
type-reversedpid pp:px:v ... pp:vx:v ... pp:eps:v pp:mass:v

2-44445533 [-0.434413,...] [...] [-0.349134,...] [...] [4.0E-5,...] [5.2E-10,...]
... [...] [...] [...] [...] [...] [...]

2-00545533 [-0.142892,...] [...] [0.0776743,...] [...] [4.0E-5,...] [5.2E,...]

Table III
THREE ALTERNATIVE DATA SCHEMAS FOR THE COSMOLOGY DATASET

Data Model Row Column Version
Schema1 sid-type-pid particle properties no meaning
Schema2 type-pid particle properties snapshot id
Schema3 type-reversedpid particle properties snapshot id

and return it to any other participating station, based on
the availability of bikes and empty docks respectively. The
data is collected every minute by the sensors equipped
in 404 stations around the city and stored in the form
of XML. In each XML file, there are station id, name,
geographical coordinates, docks’ status, and other station-
related information. The dataset we used was collected for
a period of 70 days, from September 24, 2010 to December
1, 2010. It is a 12 GB dataset that contains 96,842 data-
points for all the Montreal stations.

B. Three Alternative Data Schemas for the Cosmology
Dataset

We have experimented with one two-dimensional data
schema and two three-dimensional data schemas for the
cosmology dataset, depicted in Table III.

The Data Schema1 is the most straightforward orga-
nization for this dataset. It is a simple mapping from
the relational database model to this schema, a case of
two-dimensional data model. A concrete example for this
data schema is shown in Table II(a). The row key is a
combination of snapshot id, particle type and the particle
index. Each column corresponds to a different attribute of
the particles. The composite row key ensures that data within
the same snapshot and of the same type is stored together.
Therefore queries that focus on one snapshot should perform
well in this schema since they will benefit from the data
locality. The disadvantage of this data schema is that each
row has a small amount of data, i.e., a single particle in a

snapshot. As a result, many rows will end up being stored
within a single region. Therefore, computations that focus on
the data located in the region will cause region hot-spotting
and will not sufficiently benefit from the coprocessor-based
parallelism. In addition, when a query needs to examine
particles across different simulation snapshots or different
types of particles, many irrelevant rows will have to be
scanned, which, we anticipate, to slow the performance
greatly.

Data Schema2 is a three-dimensional data schema. The
row key is composed of the particle type and the particle
index. The columns hold the values of the particle prop-
erties, as the particles are changing over time. Table II(b)
demonstrates how the data is organized in this schema with
some specific data. Compared with Data Schema1, Data
Schema2 makes use of the version dimension to store the
snapshot information. This kind of data grouping across
snapshots leads to good data locality, for queries examining
one particle across snapshots. In addition, it improves the
distribution of data across the regions. This data schema
still follows the same sequential row key as that in the Data
Schema1. When it comes to the computation which only
focuses on a range of particles, the region hot-spotting would
still occur.

Data Schema3 is an improvement over Data Schema2,
in terms of the potential region hot-spotting issues. A case
of Data Schema3 is presented in Table II(c). The only
difference between Data Schema3 and Data Schema2 is the
row key, which is designed as the reversed particle index in
order to “disorder” the particles and to distribute particles
of the same type across the nodes of the cluster. It can
avoid the hot-spotting issues by distributing the sequential
particle across the cluster. It can be seen as a mimic way
of hashing partition, which is good at querying the scattered
data but weak in range query. This data schema gets round
the problems existing in the previous data schema, while it

2012 IEEE 6th International Workshop on the Maintenance and Evolution of Service-Oriented and Cloud-Based Systems (MESOCA)

50

Table IV
THREE ALTERNATIVE DATA SCHEMAS FOR THE BIXI DATASET

Data Model Row Column Version
Schema1 hour-sid minutes current time
Schema2 hour-sid monitoring metrics minutes [0,59]
Schema3 day-sid monitoring metrics minutes [0,1439]

loses the data locality strengths in the two data schemas. It
is competitive when it comes to dealing with big data and
huge computations. However, it cannot show its value in the
case of puny computations, which is the inherent shortness
of hashing partition.

C. Three Alternative Data Schemas for Bixi dataset

Table IV summarizes three alternative data schemas for
the Bixi dataset. This data set is different from the cosmol-
ogy data set in that, although the number of individual data
elements to be tracked over time is relatively small (404
bicycle states as opposed to 321,065,547 particles), there is
a longer history of this data over time (100,800 snapshots
as opposed to 9). Therefore, in designing the three Bixi
data schemas, we focused on experimenting with different
numbers of values stacked on the version dimension, and the
impact of this choice on the performance of a single query.

The Data Schema1 belongs to the two-dimensional cat-
egory of data models. In this schema, the row key is
constructed as a combination of hourly timestamp and the
station id. Each column is the offset of the minute in one
hour. Each cell contains the values for all station-specific
metrics, as a comma-separated sequence. Accordingly, each
row includes metric values generated in one hour. A sample
of Data Schema1 is shown in Table V(a).

In Data Schema2, similar to Data Schema1, the row
key consists of the hourly timestamp and station id. Data
Schema 2 is a three-dimensional data schema, and it stores
the values recorded for a particular station every minute over
the hour in the version dimension. Instead of having all
station metrics in a single cell, named groupings of met-
ric, i.e., “metrics1”, “metrics2”, etc, are stored in separate
correspondingly named columns. In Data Schema2, just like
in Data Schema1, each row includes the metrics recorded for
each station in one hour. See detailed information about Data
Schema2 in Table V(b).

Data Schema3, another instance of a three-dimensional
data schema, is very similar with Data Schema2. The only
difference between these two data schemas is that, in Data
Schema3, the version dimension clusters the timestamps
into hourly in Data Schema2, while in Data Schema3 it
is grouped into daily. Hence in Data Schema3, each row
includes metric values for one day. Table V(c) shows a
sample of Data Schema3.

Table V
EXAMPLES OF DATA SCHEMAS FOR THE BIXI DATASET

(a) Data Schema 1
timestamp-sid 0 1 ... 30 ... 59

2010010101-001 (2,3) (5,4) (...) (10,3) (...) (0,3)
... (...) (...) (...) (...) (...) (...)

2010010201-001 (1,4) (3,6) (...) (1,12) (...) (3,0)

(b) Data Schema 2
timestamp-sid metrics1:[m0-m59] metrics2: [m0-m59]

2010010101-001 [2,5,...,0] [3,4,...,0]
... [...] [...]

2010010201-001 [1,3,...,0] [4,6,...,0]

(c) Data Schema 3
timestamp-sid metrics1:[m0-m1439] metrics2: [m0-m1439]
20100101-001 [2,5,...,0] [3,4,...,0]

... [...] [...]
20100102-001 [1,3,...,0] [4,6,...,0]

V. EXPERIMENTAL RESULTS

In this section, we discuss our experiments, including our
experimental setup, the sample queries we designed on the
two datasets, and the performance results for each query
with different data schemas on both datasets.

A. Environment Setup

Our experiments were performed on a four-node cluster,
running on four virtual machines. The four virtual machines
run on IBM System X x3500 M2, which has 8-core, 64
GB RAM machine, 8 ultra-fast hard drivers in a RAID 5
configuration, and uses VMWare to host a set of virtual
machines. The virtual machines have 2 cores, 8GB of RAM,
and a 50GB disk. And they are running 32 bit Ubuntu 10.04.
We used Hadoop version 0.20.2, and HBase version 0.93,
re-compiled from source to suit our requirements of using
the coprocessor framework. Hadoop and HBase are each
given 1GB of memory in every running node. HDFS is
configured with a replication factor of 2. HBase is managing
its own Zookeeper instance running on the same machine
as the HMaster. HBase and Hadoop are kept as the default
configuration except reconfiguring 5KB caching size. For all
test cases, we ran the experiment 5 times and took the mean
of the last three.

As we have already discussed, our experiment is designed
to investigate the differences in performance of read-heavy
queries when using different data schemas for the same
dataset. The experiment is based on a system which enables
users to create a table in HBase, store their data, and process
the queries. There are three important components in our
system: the TestClient, the HBaseClient and the User-Level
Coprocessor. We implemented the user-level coprocessor
for both datasets respectively, named as CosmoCoprocessor

2012 IEEE 6th International Workshop on the Maintenance and Evolution of Service-Oriented and Cloud-Based Systems (MESOCA)

51

and BixiCoprocessor. These two implemented coprocessors
should first be deployed on the HBase Region Server, before
the experiment and instantiated in run time during the
experiment.

At run time, the TestClient generates the query loads for
each dataset according to a pre-defined configuration and
sends each individual query to the HBaseClient. HBase-
Client handles the query requests according to the query
identifier. The HBaseClient has two objects, a callable and
callback pair, for each query. The callable object is used
to envelope method invocations to the server, using the
coprocessor RPC framework. The callback object is invoked
when results for the above call become available from the
coprocessor [10]. When it receives a query, the HBaseClient
invokes the caller function which invokes a RPC call to the
region servers. The RPC calls are received by HBase regions
and executed as a batch process. The regions who should
handle the RPC calls are determined by the match between
the queried range and the range for which each region is
responsible. After the coprocessor has completed the task,
it returns the results to the client. The callback object in
HBaseClient performs the aggregation of results from the
various region coprocessors. It should be noted that the calls
from client side are executed on the corresponding regions
in parallel.

B. Sample Queries

We designed three queries for the Cosmology dataset and
one query for Bixi dataset. There are two big challenges in
analysing the Cosmology dataset with the existing strategies
[6]. First, with the size of simulations growing fast, the
data analysis cannot be efficiently performed on shared-
memory platforms, with the existing serial data analysis
software. Second, the simulation snapshots cannot be loaded
into memory efficiently because of the little increased I/O
bandwidth of a single node. As a result, the queries that filter
and correlate data from different snapshots have very large
memory requirements and become highly I/O constrained.
We want to take advantage of HBase platform to explore
potential performance improvements to address these chal-
lenges.

The three queries we experimented with are inspired by
the queries that astronomers might be interested in, as they
explore the changes in the constitution of particles over time.

Cosmology Query1: Given a type of particle, a snapshot,
a property and an expression for the property value, get all
the particles of this type in the snapshot whose property
matches the expression. This query invokes a range scan in
one snapshot

Cosmology Query2: Given a type of particle and two
snapshots, s1 and s2, get all the particles added or destroyed
between s1 and s2. This query compares the data across two
snapshots.

Cosmology Query3: Given a type of particle, a property,
a set of particle ids and a set of snapshots, get the values
of the property of the particles with these IDs across the
selected snapshots. This third query retrieves the data from
multiple snapshots.

We chose to also experiment with the Bixi dataset because
of its densely increasing timestamps. We designed a single
query for this data set to examine the performance impli-
cations of different lengths of data stacked on the version
dimension, in the three-dimensional data models.

Bixi Query: For a given list of stations and a time, get
their average bike usage for last 1, 2, 4, 8 and 16 days. Its
boundary condition is to get such an average for all the 404
stations.

C. Experimental Analysis
For the Cosmology dataset, we performed experiments for

all three queries as described in Section V-B with three data
schemas shown in Section IV-B. For the Bixi dataset, one
experiment was executed for the query described in Section
V-B with three data schemas presented in Section IV-C.

All queries are processed in parallel by user-level co-
processors running server side. The execution times are
affected by two parameters. First, range scan, as the basic
operation, is the most expensive computation during pro-
cessing. Consequently, the execution time becomes larger
as the number of rows increases. Second, the coprocessor
overhead becomes non-negligible when the range scan is
not very large. Different row-key design in data schemas
determine different range scan, and different data schemas
demonstrate the different region server distribution with the
same configuration of region size.

1) Analysis of Cosmology Dataset: Table VI(a) shows
performance results for Query1, with five scenarios under
three different data schemas. These five scenarios try to
look up all particles in one snapshot that match a set
of conditions. For example, in the first row of the table
the conditions, “2;pp;tform;>0.01;84”, refers to returning
all particles whose type is 2 and property tform is above
0.01 at snapshot 84. pp in the condition, composes the
column names along with the properties of particles As the
particle index is a part of row key in all three data schemas,
the execution time is almost entirely contingent upon the
number of particles in the snapshot. Comparing with Data
Schema2 and Data Schema3, Data Schema1 provides better
performance in all scenarios. As the particles within the
same snapshot and of the same type are stored as neighbors,
only a few number of regions need to be examined for this
query. Since Data Schema2 and Data Schema3 group all
snapshots of one particle together, particles with neighboring
IDs are scattered across more regions, and consequently,
more regions must be involved in this query. As more regions
are accessed, more overhead is caused by the additional co-
processor instantiations. As a result, Data Schema1 performs

2012 IEEE 6th International Workshop on the Maintenance and Evolution of Service-Oriented and Cloud-Based Systems (MESOCA)

52

the best for this query.
The experiment for Query2 measures the performance

when the queried data is spread in two snapshots. The
results are shown in Table VI(b). Nine query loads are
designed to get all particles destroyed between snapshot
S1 and S2. For example, in the first row of the table the
conditions, “2;29;24”, represents all star particles existing
in snapshot 29 but not in snapshot 24. Here, “2” indicates
the particle type is star. As the number of particles that
need to be compared across the two snapshots, the execution
times of the query under Data Schema2 and Data Schema3
increase but not substantially. On the other hand, the last five
scenarios fail under Data Schema1. It is also interesting to
note that in the first four scenarios, the query performance
under Data Schema1 performs much better than that under
Data Schema2 and Data Schema3, which is due to the
coprocessor overhead that the two latter data schemas suffer.
This overhead is however dominated by the cost of the last
five bigger queries. So we can conclude that Data Schema2
and Data Schema3 are suitable for computations or queries
on large scale datasets.

In table VI(c), we show the execution times for nine
queries involving 10 to 1450 particles. For example, the first
row of the table stands for a query that is to retrieve the
values of eps for 10 star particles whose indexes start from
33554444 over the snapshots defined in the last vector.

Our hypothesis here was that Data Schema3 would per-
form better because it evenly distributes the data across
clusters, which is what the data of Table VI(c) reflect. There
is only one region involved under Data Schema1, while there
are multiple regions involved under Data Schema2 and Data
Schema3. This means that under Data Schema3 the data
is better distributed, which results in the good computation
distribution and load balancing across the nodes. We can
also observe that the limit of all three data schemas when
serving queries across all snapshots. As this query relates
to all the rows, all regions are called for this query along
with a coprocessor instantiated. As many coprocessors are
running in one HBase Region server in parallel, more
resources (including memory, CPU and I/O bandwidth) are
required; limited resources lead to the delay of coprocessor
which results in HBase HRegion server crash and the time-
out exception from Zookeeper. Intuitively, this phenomenon
points to the fact that, in addition to a well designed data
schema, more performance might be achieved with a bigger
number of nodes in the cluster.

2) Analysis of Bixi Dataset: The Bixi query was evalu-
ated with ten scenarios whose execution times are shown
in Table VII and Table VIII. The distributions of working
regions, i.e., regions on which the coprocessor instances run,
for five of these scenarios are shown in Table VIII. The
distributions of working regions are expressed in vectors in
which each element means the number of working regions
in the corresponding HBase region server. From the left

to right, the host names of HBase region server in this
experiment are HBase2, HBase3,HBase4, and HBase7. The
scenarios are designed for getting change trend of 100/200
stations in a period of time.

In Table VII, Data Schema3 shows better performance
than the other two, and Data Schema2 shows better per-
formance than Data Schema1. Both three-dimensional data
schemas perform better than the two-dimensional data
schema. In addition, Data Schema3, which localizes more
values in the version dimension, obtains more benefits from
the locality of the data than Data Schema2. In Table VIII,
Data Schema3 has better performance than Data Schema2
in the first three scenarios. This is because the working
regions in Data Schema3 are better distributed in the cluster.
From the last two scenarios, we can see that the execution
time increases rapidly when there are two regions on one
HBase region server in Data Schema3, although there is
no significant difference between these two data schemas.
This phenomenon might be caused by the limited memory
resources for coprocessors to execute and for the resulted
data to be collected. This indicates, not surprisingly, that
cluster configuration is extremely important in terms of per-
formance. In addition to the data schema, better performance
might be achieved with an appropriate number of nodes and
corresponding data volumes.

VI. DISCUSSION

In this section, we discuss broader issues related to the
three-dimensional data model and comment on the types of
applications that can benefit from it, on HBase.

“Qualitative” versus “Quantitative” Suggestions The
three-dimensional data model only suggests how to organize
the data at a high, “qualitative” level. It does not provide spe-
cific suggestions to developers for making decisions on (a)
how many columns and column families should be for their
dataset, (b) how “deep” the version dimension should be
kept, or (c) how to design the composite row key. Actually,
it is really hard to provide a specific data organization plan as
there are so many factors affecting the query performance in
HBase, including the dataset characteristics, the data-access
patterns and the HBase cluster configuration. However, our
experiments and the performance results presented in this
paper can, we hope, be used as a reference in data-schema
design.

The Apache HBase is a relatively new project. The latest
version of HBase is 0.94 which was just released in May,
2012. Many functions are not very stable, including the
functionalities around versioning. It cannot be avoided that
there are some defects during developing an application.
Moreover, as HBase is still in the early stages of devel-
opment, some interfaces are not very convenient to use. But
HBase community is striving to meet users’ expectations.
Ease-of-implementation and robustness concerns aside, this
three-dimensional data model in this study can broaden one’s

2012 IEEE 6th International Workshop on the Maintenance and Evolution of Service-Oriented and Cloud-Based Systems (MESOCA)

53

Table VI
EXECUTION TIMES FOR THE COSMOLOGY QUERIES ACROSS THE THREE DATA SCHEMAS

(a) Query 1
Query1 Schema1(s) Schema2(s) Schema3(s) Number of Particles Number of Comparisons
2;pp;tform;>0.01;84 14.383 38.502 34.427 907,021 907,025
2;pp;tform;>0.08;128 17.722 42.751 42.243 604,567 2,743,966
2;pp;tform;>0.05;128 23.208 44.445 42.498 2,237,646 2,743,966
2;pp;tform;>0.08;216 38.496 54.290 54.322 4,257,556 6,396,955
2;pp;tform;>0.08;512 62.361 87.981 87.142 10,278,145 12,417,544

(b) Query 2
Query2 Schema1(s) Schema2(s) Schema3(s) Number of Particles Number of Comparisons
2;29;24 0.197 27.434 28.464 4,277 5,568
2;60;24 3.342 32.550 30.481 257,928 67,268
2;84;24 6.446 38.128 34.551 905,734 907,025
2;128;24 14.797 44.611 45.000 2,742,675 2,743,966
2;216;24 NA 53.325 55.783 6,395,664 6,396,955
2;512;24 NA 79.113 76.163 12,416,253 12,417,544
2;216;128 NA 52.273 49.012 3,652,989 6,396,955
2;512;128 NA 66.709 80.449 9,673,578 12,417,544
2;512;216 NA 61.991 81.325 6,020,589 12,417,544

(c) Query 3
Query3 Schema1(s) Schema2(s) Schema3(s) Number of Particles
2;pp;eps;[33554444,10];[24] 44.096 42.515 30.435 10
2;pp;eps;[33554444,10];[24,512] 50.406 45.986 33.559 20
2;pp;eps;[33554444,10];[24,60,128,512] 64.306 46.061 33.192 40
2;pp;eps;[33554444,10];[24,29,60,84,128,512] 97.370 48.634 33.757 60
2;pp;eps;[33554444,10];[24,36,45,60,84,128,216,512] 177.889 50.636 35.527 80
2;pp;eps;[33554444,50];[24,29,84,512] NA 56.561 47.775 200
2;pp;eps;[33554444,50];[24,29,36,45,60,84,128,216,512] NA 110.301 59.602 450
2;pp;eps;[33554444,100];[24,29,36,45,60,84,128,216,512] NA 429.498 162.808 900
2;pp;eps;[33554444,150];[24,29,36,45,60,84,128,216,512] NA NA NA NA

Table VII
EXECUTION TIME OF THE BIXI QUERY

Query1 Schema1(s) Schema2(s) Schema3(s)
1day-200stations 1.1 1.4 0.4
2day-200stations 1.9 3.6 0.6
4day-200stations 2.5 4.0 1.2
8day-200stations 12 4.8 4.2
16day-200stations 13.8 7.3 6.2

Table VIII
WORKING REGION DISTRIBUTIONS FOR SCHEMA2 AND SCHEMA3 FOR BIXI DATASET

Query1 Schema2 Schema3
Execution Time(s) Working Regions Execution Time(s) Working Regions

Distribution Distribution
1day-100stations 1.258 (0,2,0,0) 0.47 (1,0,0,0)
2day-100stations 1.779 (0,2,0,0) 0.579 (1,0,0,1)
4day-100stations 2.566 (0,2,0,0) 1.161 (1,1,0,1)
8day-100stations 4.280 (0,2,1,0) 4.376 (1,1,0,2)
16day-100stations 5.839 (1,2,2,0) 5.401 (1,2,2,2)

views about how to organize the data in HBase or other
NoSQL databases.

Dynamic Data versus Static Data The three-dimensional
data model is designed to support dynamic data, over time.
In the case of datasets that have both static and dynamic data,

we suggest that the static data should be stored separately.
For example, in Bixi dataset, we can store the static attributes
of each station into a separate table[10].

Historical Dataset versus Real-Time Datasets This three-
dimensional data model can be used in historical time-series

2012 IEEE 6th International Workshop on the Maintenance and Evolution of Service-Oriented and Cloud-Based Systems (MESOCA)

54

data analysis, or for “write-once read-many” applications,
with rare updates. As the “version” dimension in HBase
was intended to guarantee concurrency and consistency, this
data model cannot be directly used for on-line transaction
processing, or for write-intensive applications without any
other synchronization mechanism.

Supported versus Non-Supported Datasets In some appli-
cations, there are multiple types of data objects; in this paper,
we discussed how this model may be used to organize and
store data sets with a single data-element type, i.e., particles
and station observations. In other words, complex data sets
with multiple object types and relations among them are
outside the scope of this data model.

This data model can support in a straightforward manner
several types of data sets. First, it is ideal for monitoring
metrics: the “version” dimension can be used to store the
stacked values of different metrics in time, each metric can
be assigned a corresponding column, and the row key will
be associated with a period, such as week, month or year.
A typical example might be a health-monitoring system
collecting metrics at regular intervals. Another example is
real-time sensor-based systems, where search is the primary
required functionality and updates (almost) never happen.

Complex objects, whose properties change over time, can
also be stored with this data model. The row key can
be named as the object id, columns represent the object
properties, and the version dimension can represents the
version index. For example, source-code modules could be
stored in this data model, with each file corresponding to
an object, and each new committed module version would
constitute a new object stacked in the version dimension.
The various columns might be associated with meta-data and
static-analysis metrics of this file, owners, creators, related
bugs, lines of code and so on.

VII. CONCLUSION AND FUTURE WORK

HBase, as a NoSQL database offering, is rapidly becom-
ing the chosen solution for scalable data processing. In this
paper we proposed a three-dimensional data model in HBase
for large time-series dataset analysis. This three-dimensional
data model provides a new view of data organization and
management by using HBase version dimension in a differ-
ent way.

We have experimented and evaluated the performance
impact of this type of data models with two data sets, of
different sizes and different time lengths. For each of these
data sets, we have compared the performance of several ad-
hoc queries, implemented with coprocessors, across different
data schemas, some of which (do not) use the third HBase
dimension. The experiment results show improved perfor-
mance with the data schemas that use the third dimension
of HBase. Our experiments also show that performance is
highly impacted by the distribution of the data across cluster
nodes, which implies that the design of the row-key is of

significant importance. At last, we discussed the application
scope for the proposed data model.

There are still several problems to solve. Besides the per-
formance impact, the three-dimensional data model should
be evaluated from scalability, elasticity and utilization as-
pects. Given the feature of the three-dimensional data model,
how to extend its applicable scope to on-line transaction
processing system is valuable and challenging. In addition to
the time-series dataset, many other datasets such as spatial
dataset and graphic dataset should also be investigated to
suggest the data management design in the future.

ACKNOWLEDGEMENT

The authors wish to thank Himanshu Vashishta for many
interesting conversations on HBase. This work has been
funded by the SAVI Strategic Network, NSERC and AITF.

REFERENCES

[1] D. Agrawal, S. Das, and A. El Abbadi, “Big data and cloud
computing: current state and future opportunities,” in Pro-
ceedings of the 14th International Conference on Extending
Database Technology. ACM, 2011, pp. 530–533.

[2] C. Chen, G. Chen, D. Jiang, B. Ooi, H. Vo, S. Wu, and
Q. Xu, “Providing scalable database services on the cloud,”
Web Information Systems Engineering–WISE 2010, pp. 1–19,
2010.

[3] R. Agrawal, A. Ailamaki, P. Bernstein, E. Brewer, M. Carey,
S. Chaudhuri, A. Doan, D. Florescu, M. Franklin, H. Garcia-
Molina et al., “The claremont report on database research,”
ACM SIGMOD Record, vol. 37, no. 3, pp. 9–19, 2008.

[4] R. Hecht and S. Jablonski, “Nosql evaluation: A use case
oriented survey,” in Cloud and Service Computing (CSC),
2011 International Conference on. IEEE, 2011, pp. 336–
341.

[5] “Apache HBase Reference Guide,” http://hbase.apache.org/
book/book.html.

[6] S. Loebman, D. Nunley, Y. Kwon, B. Howe, M. Balazinska,
and J. Gardner, “Analyzing massive astrophysical datasets:
Can pig/hadoop or a relational dbms help?” in Cluster Com-
puting and Workshops, 2009. CLUSTER’09. IEEE Interna-
tional Conference on. IEEE, 2009, pp. 1–10.

[7] “Bixi Dataset,” https://s3.amazonaws.com/bixidata/bixi
comp.tar.gz.

[8] D. Borthakur, J. Gray, J. Sarma, K. Muthukkaruppan,
N. Spiegelberg, H. Kuang, K. Ranganathan, D. Molkov,
A. Menon, S. Rash et al., “Apache hadoop goes realtime at
facebook,” in Proceedings of the 2011 international confer-
ence on Management of data, SIGMOD, vol. 11, 2011, pp.
1071–1080.

[9] F. Chang, J. Dean, S. Ghemawat, W. Hsieh, D. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. Gruber, “Bigtable:
A distributed storage system for structured data,” ACM Trans-
actions on Computer Systems (TOCS), vol. 26, no. 2, p. 4,
2008.

[10] H. Vashishtha and E. Stroulia, “Enhancing query support in
hbase via an extended coprocessors framework,” Towards a
Service-Based Internet, pp. 75–87, 2011.

2012 IEEE 6th International Workshop on the Maintenance and Evolution of Service-Oriented and Cloud-Based Systems (MESOCA)

55

[11] K. Pingali, D. Nguyen, M. Kulkarni, M. Burtscher, M. Has-
saan, R. Kaleem, T. Lee, A. Lenharth, R. Manevich,
M. Méndez-Lojo et al., “The tao of parallelism in algorithms,”
in Proceedings of the 32nd ACM SIGPLAN conference on
Programming language design and implementation. ACM,
2011, pp. 12–25.

[12] “Whats OpenTSDB?” http://opentsdb.net/.
[13] “Modeling Time Series Data on top of Cassandra,”

http://engineering.rockmelt.com/post/17229017779/
modeling-time-series-data-on-top-of-cassandra.

2012 IEEE 6th International Workshop on the Maintenance and Evolution of Service-Oriented and Cloud-Based Systems (MESOCA)

56

