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Abstract—This paper describes the design of a Virtualized
Application and Networking Infrastructure (VANI) node that
can be used to facilitate network architecture experimentation.
Currently the VANI nodes provide four classes of physical
resources: processing, reconfigurable hardware, storage and
interconnection fabric, but the set of sharable resources can
be expanded. Virtualization software allows slices of these
resources to be apportioned to VANI nodes that can in turn
be interconnected to form virtual networks that can operate
according to experimental network and application protocols.
We discuss the design decisions that have been made in
the development of this system and we provide a detailed
description of the prototype, including how users interact with
the resources and the interfaces provided by the virtualization
layers.
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I. I NTRODUCTION

The success of the Internet has influenced almost all
aspects of our society. This success has resulted in rapid
growth for the Internet, both in terms of the amount of data
traffic, and the diversity of application run upon it. However,
many new challenges have been exposed by this growth
in areas such as scalability[1], flexibility[2], reliability[3]
and security[4]. Resolving these challenges will most likely
require changes to the current Internet architecture[5][6].

What this future architecture will look like is currently an
open research question. There has been a significant amount
of work done in this field (e.g. [7], [8], [9], [10], [11]).
However, it is difficult to compare and contrast such ideas
because it is difficult to run large-scale experimentation for
new networking architectures. Therefore, what is needed is
an infrastructure that simplifies the processes of developing
such large-scale experiments.

One testbed currently in use for testing networking ideas
is called PlanetLab [12]. PlanetLab is an overlay that runs
over the Internet, and has been created for the purpose
of distributed application testing. This overlay containsa
number of processors that researchers may reserve to run
custom software on. However, while PlanetLab does provide
a testbed for testing distributed software, it supports proces-
sors as the only resource type. Further, PlanetLab does not
provide the option to run on dedicated fabric, which means
experiments may be affected by live traffic conditions, and
researchers may not experiment with new layer 3 protocols.

A new initiative called the Global Environment for Net-
working Innovations (GENI) [13] is attempting to rectify
some of the shortcomings of PlanetLab. This initiative plans
develop an infrastructure containing nodes with heteroge-
neous resources available for researchers to access and use
for networking experimentation. Further, it is expected that
GENI will use the National LambdaRail infrastructure [14],
to provide a dedicated routing fabric for further control over
the network.

In [15], an application-oriented approach to exploring fu-
ture networking alternatives is proposed. This work presents
a reference model, called the Application-Oriented Networks
(AON) reference model, in which applications are created
through the composition of programmable resources and
services provided, possibly, by other researchers.

This paper attempts to build on the work done in [15]
by presenting a Virtualized Application and Networking
Infrastructure (VANI) node. This is a working prototype
of a node consisting of multiple programmable and non-
programmable resources that have been virtualized as ser-
vices that can be used and networked together. Further,
these services can be used to develop powerful packet
processing techniques, testing new network architectures.
However this infrasructure can be used as an architecture for
future networks where applications are deployed direcly on
the network, and the network provides a series of services, as
opposed to simply being a data transmission system. Finally,
this paper provides an example of the use of VLANs [16]
to provide performance isolation, and highlights some of the
complexities that can arise when using this mechanism on
a physical resource supporting multiple virtual resources.

II. T ESTBEDDESIGN PRINCIPLES

In our design we followed five basic requirements: First,
the infrastructure should allow experimentation for future
network architectures that might not fit into the traditional
layered definitions. For example, it might be possible for
future transport planes in a network to perform tasks such
as rich content delivery in addition to the raw data delivery
[15]. To do so, we need to have nodes that could do content
delivery related tasks such as content processing and storage.

The second requirement is to allow researchers to exper-
iment with new layer three protocols (as in the traditional
definition of L3) instead of the current Internet Protocol.
Another requirement in the testbed is to be able to setup



experiments or create new applications rapidly using already
developed and ready to use components that could be
accessed through open interfaces. This requirement could
be satisfied through the use of the SOA technologies and
standards such as Web Services that could allow flexible
and dynamic composition of reusable service components.

The forth requirement is to provide an isolated and secure
environment for researchers to perform their experiments
and develop their networked applications. The fifth require-
ment is to include monitoring and debugging mechanisms.
In our design, we envisioned powerful complex event pro-
cessing components that could be customized to gather
and analyze test and debugging data for each experiment
separately as well as for the testbed itself.

Based on these main requirements, we designed a two
plane architecture for our platform: the control and man-
agement plane (TB-CMP) and the application plane. Due to
the near universal acceptance of the Web Services (WS) and
SOA technologies, we utilized WS interfaces for accessing
the in-platform resources, and through the use of Business
Process Execution Language (BPEL) in our control plane we
can dynamically assign these resources to the researchers
and application providers. On the other hand in the ap-
plication plane, the researchers and application providers
could have their own custom designed layered architecture
in isolation from other applications and experiments.

In this paper, we discuss the steps and design choices
in the development of the virtualized physical resources in
this Virtual Application Networking Infrastructure, and we
describe how researchers can test their ideas in isolation
within this environment.

III. N ETWORKING VANI NODES

The VANI nodes provide Web Services interfaces to the
TB-CMP. Each resource type contained on a VANI node
is controlled by a Web Service, meaning that each VANI
node has multiple Web Services. When a researcher wants
to communicate with a resource using these Web Services
interfaces, they would first contact the TB-CMP.

In the application plane, researchers are permitted to
contact their resources directly to run their experiments.
Direct access to resources always takes place through a
gateway, however the gateway that is used depends on the
type of network a researcher is using for their experiments.
It is anticipated that there will be a two-phase development
process for interconnecting VANI nodes. The first phase
will involve carrying the traffic directly over the Internet.
Although not ideal, as it does not provide researchers with
tight control over traffic conditions, it is faster to develop.
The second phase uses traffic carried by Ethernet across a
wide area using networks such as CANARIE [17], which
provides researchers with a dedicated network and allows
them to develop custom protocols above layer 2. Figure 1

Figure 1. Connectivity of two VANI nodes with the CANARIE network.
G stands for gateway, and it handles IP packets. B stands for bridge, and
it handles raw Ethernet frames.

shows the connectivity of two nodes using the CANARIE
network.

A. Internet Connectivity

When a resource is allocated to a researcher, it is given an
internal IP address. When providing access to the Internet,
this internal IP address must be converted to an externally
visible IP address using a gateway that does NAT. This
gateway will be provided with multiple externally visible
IP addresses that researchers may book and associate with
the internal IP address of their required resource. Currently
a solution to do this is being developed using the reconfig-
urable hardware resource (section V-C) to reach speeds of
10 Gbps.

B. Ethernet Connectivity

Once the VANI nodes have been connected to a network
such as CANARIE, packets from the Internet will need
to traverse two gateways to reach the internal resources:
one to enter the CANARIE network, and one to enter the
VANI node. The reasons for connecting with CANARIE are
twofold. First, CANARIE will provide a dedicated fabric
on which experimental traffic may be carried. This will
allow researchers tight control over the conditions of their
experiments, allowing them to do things such as injecting
failures into the network. The second reason for connecting
with CANARIE is that it provides raw Ethernet connectivity.
The VANI nodes must run on Ethernet technology, however
it does not assume any physical layer connectivity, nor does
it assume any protocols above layer 2. This allows the
network to support experiments with new protocols above
layer 2 (for example, IP need not be used, although it may
be).

C. Performance Isolation

Since the purpose of the VANI nodes is to support
networking experimentation, it is important that each re-
searcher’s virtual network be isolated from the others, to
prevent inadvertent or intentional interference with another
researcher’s experiments. To do this, each VANI node uses



VLANs [16], which use tags to prevent traffic from reach-
ing a resource that has not been granted access to the
researcher’s tag. Normally a researcher will have a private
tag (or tags) that only they have access to. However, it is
possible to add another researcher’s VLAN to a resource,
provided both researchers consent to this assignment. This
allows researchers to have experiments intercommunicate,
but only when this is desired.

One restriction of VLANs is that the tags are only 12-
bits long, meaning there are only 4096 total VLAN tags
available. For this reason, VLAN tags are only local to a
VANI node. However, there must be a mechanism to allow
the gateway to know which VLAN to send an incoming
packet on. When connected to the Internet, a routing table
is maintained on the gateway and the destination subnet is
used to determine the VLAN.

On the other hand, when connected to CANARIE, some
experiments may not use IP. Thus, to identify packets within
the CANARIE network, Q-in-Q tagging as defined in the
IEEE 802.1ad standard [18] is used. In Q-in-Q tagging, two
12-bit tags are added to the packet: an outer tag and an inner
tag. Under most networking conditions the outer tag is used
by the provider, while the inner tag is used by the user to
maintain VLAN tags across the network. However, within
this network design the VLAN tags need not be maintained,
as they are only local tags. Thus the outer and inner tag are
combined to create a single 24-bit tag. Each researcher is
given a globally unique, 24-bit Q-in-Q tag and each packet
in the network is tagged with their Q-in-Q tag.

IV. A RCHITECTURE

The current prototype for the VANI nodes has four
resource types, although more will be added in the future.
The first three resources – processing, reconfigurable hard-
ware (RH), and storage – are available for researchers to
access through the TB-CMP. Of these three, the processing
RH are programmable resources, while storage is non-
programmable. The final resource, the fabric, is an internal
resource that is automatically configured by the TB-CMP.
The virtualization layer for each of the resource types consist
of three main components: a BPEL, a Web Service, and
a number of subagents. The messaging flow is presented
graphically in Figure 2.

The first component within the virtualization layer is
the BPEL. The BPEL is the component that orchestrates
communications between different Web Services within a
VANI node. This component is transparent to the TB-CMP:
the BPEL appears as a series of Web Services interfaces,
and the partitioning of messages to communicate with the
underlying Web Services is taken care of automatically by
the BPEL. One example of when a BPEL is required is for
the resourceGet message (see section V-A). When a resource
is reserved, the fabric must be configured, and the resource
must be allocated to the researcher.

Figure 2. Messages between TB-CMP and Web Service (WS). 1) web
service message is received by the BPEL. 2) The BPEL forwards selected
parts of the message to the web services. 3) if well-formed, WS request is
reformatted and sent to subagent. 4) the subagent responds tothe message.
5) WS responds to the BPEL. 6) The responses from the Web Services are
formatted, and forwarded to the TB-CMP.

The second component is the Web Service. The job of
the Web Service is to ensure that messages sent to the
VANI nodes are well-formed. Additionally, the Web Service
will perform control-related checks such as determining
which virtual resources have been allocated, and releasinga
virtual resource once the time has expired. If a message is
well-formed and passes the control-related checks, the Web
Service will forward the required information using a custom
protocol to the final component: the subagent.

The subagent is software that resides directly on the
physical resource being controlled. Since a physical resource
may consist of multiple virtual resources, the subagent is
responsible for one or more virtual resources. It receives
messages using a custom protocol selected that resource type
because different resources will have different requirements
in terms of message complexity, and will have differing
computational resources available for parsing messages.

The purpose of the subagent software is to run the
necessary scripts to set up, control, and tear down virtual
resources. For example, when a GET request is received for
a processing resource, a skeleton for a virtual processor is
created. Further, when a PROGRAM request (see section
V-A) is received, the subagent will receive an image file
which will be extracted into the appropriate location, and
the virtual processor will be started.

V. WEB SERVICES INTERFACES

The main interfaces for the programmable resources are
presented in Table I. There are more interfaces for control



Table I
IMPORTANT WEB SERVICE INTERFACES FOR PROGRAMMABLE

RESOURCES

Name Description
resourceList List the resources the web service man-

ages
resourceGet Reserve a resource for a researcher to

use for a certain timeframe (or until the
researcher releases the resource if that is
what is requested)

programResource Place an image on a resource, and start
it running

resourceStatus Get the status of a resource
resourceRelease Release the resource, allowing anyone

to reserve it

Figure 3. Example of a request that would reserve a resource for a
researcher for 1 hour.

and resource-specific commands, but the ones in Table I
are the most important. The next section will provide a
brief overview of how the TB-CMP would interact with the
programmable resources using these interfaces, to provide
researchers with the necessary functionality. After this,more
detailed view of each resource will be presented.

A. Main Interfaces Overview

Initially, the TB-CMP will likely list the resources avail-
able from a particular Web Service. This will provide it with
a list of universally unique identifiers (UUIDs) which list
the virtual resources available from this Web Service. Next,
when a researcher would like to use a particular type of
resource, the TB-CMP would get one of the resources by
supplying one of the UUIDs provided by the list command.
The get command reserves the resource for particular re-
searcher’s exclusive access for a specified time, or until it
is manually released. An example of a get request is shown
in Figure 3.

Once a resource has been reserved, it is possible for
that resource to be programmed. Programming a resource
involves sending the Web Service an image file, which is
then installed on the specified resource. Examples of image
files include bitstreams for reconfigurable hardware, or a tar
archive of a filesystem for a processor. Once programmed,
the resource is automatically started.

Finally, once a researcher has finished with the resource,
they may release it. Releasing a resource removes the
researcher’s image from the resource, places the resource
in a known state, and puts the resource back into the pool
of available virtual resources.

B. Processing

The processing resource was developed using the Linux-
Vserver [19] software, which allows multiple virtual pro-
cessors to be instantiated on a single server. These virtual
processors share a kernel, which allows the resource provider
to have some control over what a vserver may do. However,
it does restrict processors to the Linux operating system.

Each virtual processor within a VANI node is a vserver.
When programming a vserver, researchers provide a tar
archive of a Linux filesystem. This filesystem is then ex-
tracted by the processing subagent into the directory that
will act as the root directory for that vserver. Finally, the
vserver is started by the subagent, after which researchers
may access their resource directly.

One complication that was found when running multiple
vservers on a single physical node is that all vservers
use the host’s routing table for determining where to send
packets. This allows the host to act as a kind of gateway,
enabling packets from a vserver to access VLANs that were
allocated to a different vserver on the physical processor.
This behaviour is undesirable, as it breaks the performance
isolation provided by the VLANs.

To prevent this from happening, a firewall is used. This
firewall will drop any packets in which both the source
and destination IP address are internal resources (within
the 10.X.X.X range), if they are on different subnets. This
methodology works because IP addresses are assigned to
internal resources in such a way that different VLANs are
always found on different subnets. Thus, by setting the
netmask properly, it is possible for the firewall to determine
when a vserver is attempting to access a VLAN it should
not have access to, and drop the packet.

C. Hardware

The platform selected for the hardware acceleration com-
ponent within the VANI node was the BEE2 board [20].
This board contains five FPGAs, four 10 gigabit Ethernet
ports per user FPGA, four DDR2 DIMM slots per FPGA,
and on-board high bandwidth channels between each FPGA
(Figure 4).

On this platform, each user FPAG is available for re-
searchers to reserve and program. The control FPGA is used
to monitor and manage the user FPGAs. It is loaded with a
bitstream that instantiates a PowerPC processor on the FPGA
and this PowerPC runs Linux. Then the subagent program
is run on the control FPGA and is used to communicate
with the Web Service. Also, the control FPGA is capable
of sending bitstreams to each of the user FPGAs through a
Selectmap [21] interface. Thus, it is the subagent running on
the control FPGA that resets and programs the user FPGAs
for the researchers.

Since the researchers have full control over the functional-
ity of the user FPGAs, it is difficult to provide a connection
between the Web Services interfaces and the user FPGAs.
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Figure 4. Block Diagram of the BEE2 platform

However, this connection is valuable because it provides
certain functionality such as the ability to check the status
of the resource, or inform it of a change in access to the
VLANs. Thus, a small block has been developed by the
authors that can be included in any design created by users.
This block is used to communicate with the control FPGA
over the Selectmap interface to provide information such as
the user FPGA’s status, or to receive changes in state (such
as being granted access to a new VLAN). This block may
be customized by researchers, so long as they follow the
communication protocol over the selectmap interface. This
block will be made public as a Xilinx EDK [22] project,
so that all researchers will have access to it. Similarly, to
access the ten gigabit Ethernet links, a block developed by
Berkeley will be made public to simplify the process of
accessing resources available on the BEE2 boards.

One important Web Service interface unique to the BEE2
platform is called the registerInteraction operation. Within
the in-house designed block are 32 read-only registers, and
32 write-only registers. The read registers can be thought of
as a collection of 32 remotely accessible LEDs, and the write
registers as 32 remotely accessible switches. Both read and
write registers are accessed through the registerInteraction
operation, providing a simple, Web Services interface to
control and debug FPGA designs. It is expected these
interfaces will be used for initial testing, as they are simpler
to use than the ten gigabit Ethernet connections. However,
it is expected that any packet processing will receive and
transmit packets over the ten gigabit Ethernet connections.

D. Storage

Physically, storage is a storage area network: multiple file
servers collude to provide the illusion of one large storage
device. Logically, storage is made of three components:
a web service, a transaction manager, and a number of
subagents. Each file server runs a subagent program. The
transaction manager ensures that Web Service requests are

handled in the order in which they are received, and handles
bookkeeping issues such as keeping track of the amount
of storage a user has used. A hashing function is used to
provide load balance amongst the file servers.

Within the storage service, there are two resources that
are available for virtualization. The first is the disk space,
which is the amount of space a user is given to store their
files. The second resource is bandwidth, which determines
the rate at which files can be retrieved by each user.

Since there is only one web server and one transaction
manager, transferring files through these components would
be a bottleneck. Thus, each of the fileservers run an HTTP
server, allowing researchers to upload and download their
files by contacting the fileserver hosting their file directly,
removing the bottleneck. Finally, the storage service allows
researchers to quickly share files through the use of a
transaction string component. The transaction string contains
an identifier and an authorization string allowing for a single
download of a file. Only the researcher that owns the file
may request that a transaction string be created, however,
anyone may use the transaction string. Thus, by creating and
then passing the transaction string, researchers may share
files on the storage service.

E. Fabric

The purpose of the fabric resource is to provide connec-
tivity between resources in the VANI nodes, as well as to
prevent users from influencing one another through the use
of VLANs. Physically, the fabric for the VANI is comprised
of two switches: a 1 Gb managed Ethernet switch with two
10 Gb uplink ports (D-Link, DGS-3426P), and a 10 Gb
Ethernet switch (Force10, S2410). Configuration of these
switches is done using the SNMP protocol [23].

Although the fabric resource has been virtualized using
Web services, currently it is not directly accessible to users.
Instead, as users request and manipulate the other resources,
the fabric is automatically configured to set up Access
Control Lists (for MAC addresses) and VLANs.

When researchers execute commands such as reserving
or releasing processors or FPGAs, the fabric Web service
is also contacted. As the necessary work is done to reserve
the resource, the fabric service is told to configure the fabric
with the appropriate parameters. Further, the fabric service
manages IP address assignment, so it is the job of the fabric
service to let the processing or hardware service know what
IP address the newly reserved resource should use. This is
done through the use of the a business process execution
language (BPEL) composite application developed using the
openESB [24] framework. The BPEL composite application
describes a business flow of messages that allow multiple
Web services to communicate when a single operation is
called. It is the BPEL that allowed multiple operations span-
ning multiple services to be executed through the invocation
of a single Web service operation.



VI. CONCLUSIONS

In this paper, we have presented the design and im-
plementation details for the development of a Virtualized
Application and Networking Infrastructure node. This node
contains multiple physical resources that can be reserved
and used by researchers, allowing them to run services
directly in the network. The node design presented in this
paper contains four resources: processing, reconfigurable
hardware, storage, and interconnection fabric. However, this
list may be easily extended to additional resource types.

Currently a working prototype of the node has been
developed. This prototype can be used to experiment with
new networking protocols, or the development of in-network
applications. Future work includes deploying multiple VANI
nodes, interconnecting them, and running distributed exper-
iments upon the testbed.
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