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Abstract

Data generated by video applications are rarely
mined for context in order to augment and improve
user experiences. In this paper, we propose an in-
novative approach to extract context from video
streams dynamically. As a case study we apply this
approach in a context based multimedia chat appli-
cation. In particular, this paper discusses how we
perform video stream analysis to recognize faces
and logos; separate audio from video contents for
further analysis; and mine text chat messages for
keywords to infer contextual information at all lev-
els. This allows us to recognize people, logos, as
well as conversation topics and recommend videos
on the fly. One key technique is that the chat appli-
cation maintains different context spheres that can
be selectively combined and intersected to provide
a context sensitive and improved chat user experi-
ences.

1 Introduction

Personalized communication applications have be-
come ubiquitous in today’s world. They are gener-
ally single purpose applications that facilitate com-
munication. However, while using these applica-
tions users perform other activities simultaneously.
Depending on the context of the conversation, users
browse the web, share links, research topics of in-
terest or even plan future activities which are re-
lated to the conversation. None of these actions are
fully integrated with existing personal communica-
tion tools.
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To illustrate this further, imagine you are using
a video chat application, such as PALTask [1], with
someone who is located relatively close by, perhaps
in another building. It is approximately noon, but
your discussion is very productive so you are con-
sidering to continue this conversation while eating
lunch together.

Throughout your conversation, the application is
constantly extracting keywords from the audio and
determines that the relevant keywords for this con-
text are now “lunch” and “food”. Consequently,
the application automatically displays several sug-
gestions for food outlets close to both users.

At this very moment, another coworker comes
closer to the camera and joins the conversation.
Through face recognition, the application is now
aware of the additional participant in this conversa-
tion and is considering her contextual information
as well. It quickly becomes apparent that the new
user is also considering lunch options.

In addition to the chat’s contents, public ele-
ments from the coworkers personal context sphere
[2, 3] can be used on the fly to further personal-
ize the resources list. A personal context sphere is
a repository of context information relevant to the
user and her personal goals hosted by a third party.
Some of this information might include, gender,
age, favourite locations and web sites of her prefer-
ence. For instance, the coworker really likes Sub-
way sandwiches, which is reflected in her context
sphere. Neither of your personal context spheres
indicate that you dislike Subway, so an application
like PALTask suggests for you to have lunch at Sub-
way nearby having automatically extracted the con-
text of the conversation, as well as the related items
of the personal context sphere.

How does PALTask know to display locations
of food outlets close by? First, the conversation’s



Face and logo
PALTASK recognition
GUI
CONTEXT VIDEO
RECOGNITION
Users

interactions

Audio to Text
PALTASK CONTEXT AUDIO
CLIENT RECOGNITION
LOGIC

Conversation
é keywords

Personal Web- KEYWORD
EXTRACTOR

PALTASK
SERVER
LOGIC

Conversation
Data

—1

WEB RESOURCES

Web-resources APIs

PERSONAL
CONTEXT
SPHERE (PCS)

User’s personal
context

Figure 1: Component architecture of the integrated
components

audio is converted to text in order to extract key-
words, from here it obtains the keywords “food”
and “lunch”. Your location can be determined via
IP, GPS or other means (if on a mobile platform),
which can also be stored in the personal context
sphere. Location context narrows down the sug-
gestion to food outlets nearby. Assuming neither
you nor the original chat partner have food pref-
erences in the personal context sphere, the appli-
cation uses the context sphere of the 3rd chat part-
ner who has this information stored and available in
her personal context sphere. The coworker is auto-
matically recognized, when she enters the view of
the camera which automatically integrates her con-
text sphere to provide improved contextual infor-
mation. Her context sphere on food items makes it
clear that she likes “Subway”. Subsequently PAL-
Task displays the location of a subway restaurant
close by, which saves time, effort and enhances the
user’s experience.

Due to the complexity of this system, we in-
troduce the individual subsystems separately. Our
evaluation of each system is also based on individu-
ally examining each context extraction sub-system.
At this stage of development we present the com-
ponents separately, full integration of these com-
ponents will occur as future work. PALTask grew

out of a preliminary prototype which was focussed
solely on context extraction of text chat for automa-
tion of personalized web tasks [1]. Figure 1 illus-
trates the proposed component architecture of our
chat system PALTask. This paper focusses on the
keyword extractor, audio module and video mod-
ule in detail. The remainder of this paper is orga-
nized as follows: Section 2 presents existing ap-
proaches and related work; Sections 3 and 4 de-
scribe the context gathering modules and their eval-
uation; Section 5 concludes the paper and Section
6 highlights future work.

2 Related Work

Context analysis for the purpose of providing per-
sonalized augmentation has been demonstrated be-
fore. Previous approaches can be found in the
domain of computer supported collaborative work
(CSCW), ubiquitous computing and in existing
chat technology to name just a few areas. How-
ever, many of these existing approaches are of-
ten dedicated to improve context gathering for a
rather narrow aspect of personalized communica-
tions (i.e., purely text). Many of these existing
approaches gather context during post processing,
rather than dynamically at runtime. Similarly,
many approaches also aim to augment only one
specific aspect of the user’s experience. With im-
provements in computing resources and context ex-
traction techniques, we aim to demonstrate a tool
which can gather context from a variety of sources
at runtime to improve users experience based on
contextual information.

Schilit and Theimer coined the terms context and
context awareness in the early 1990s [4]. Their
early work at XEROX corporation introduces the
concept of context aware applications and provides
models to understand applications’ behaviour and
interactions; context is viewed as more than sim-
ply location data, instead it includes people who are
nearby, available resources, and many more [4, 5].
Weiser, who illustrates the impact and penetration
computing has reached to the point of achieving
ubiquity, inspired their work [6].

Recent context aware communication applica-
tions include Ranganathan’s ConChat [7]. Ran-
ganathan illustrates that augmenting chat messages
with contextual information, aimed at prevent-
ing semantic ambiguity between the chat partici-



pants, can improve the user experience [7]. Simi-
larly, with the aim of improving context awareness,
SemChat proposes a non-dynamic, offline, context
analysis after the end of a chat session [8]. While
static analysis, as well as, augmentation for a single
purpose is valuable, we propose a tool which per-
forms context analysis dynamically and, ultimately,
can augment the user experience in more than just
a single dimension by providing additional relevant
information from a variety of sources and formats.

GaChat on the other hand takes a dynamic ap-
proach; it automatically annotates a chat conver-
sation, by integrating contextually relevant infor-
mation directly into the chat [9]. GaChat performs
its context analysis of chat messages on the server
side, rather than on the client side. This is similar to
our approach as far as utilizing greater processing
capabilities at the server-side. However, it again is
limited to augmenting the user experience in a very
specific way.

Abowd et al. provide a comprehensive re-
source of existing approaches on context and con-
text aware computing at the end of the 1990s [10].
Their work also points out that the very definitions
of context and context awareness are themselves
different depending on the particular system, its
scenario and its use case at any given moment [10].

Context extraction is also prominently discussed
in document analysis. Bauer et al. introduced Word
Sieve which uses external user information, such
as search and access patterns, to augment individ-
ual documents or document groups with additional
contextual information [11].

Similar to PALTask, Huang describes a system
aimed at multi-media context extraction. Huang,
however, developed a classification system aimed
at dynamically building a hierarchy of news casts,
commercials and news anchors by analysing text,
and audio [12]. PALTask differs from this approach
because we do not build a context hierarchy, but
rather extract context dynamically from a time rel-
evant window of information.

Aside from communication and document anal-
ysis, video context extraction has also other appli-
cations. Xing et al. introduce SafeVchat in collab-
oration with Chatroulette to automatically analyse
video streams in order to dynamically identify spe-
cific types of behaviour of its users [13].

Hong et al. provide a comprehensive survey in-
cluding 237 journal articles on context aware sys-
tems [14]. This survey highlights articles in var-

ious classifications, including context aware algo-
rithms, context awareness at the level of network
infrastructure, middleware, the user interface, the
application level relating to uses at home, the class-
room, health care applications, or information and
communication systems.

PALTask is designed to improve upon the exist-
ing work by dynamically gathering a broad range
of context in order to augment the user experience
with useful information on the fly.

3 Context Gathering

This section aims to provide the reader with an un-
derstanding of the individual subsystems that com-
pose the context gathering mechanism in a chat ap-
plication. The server side subsystems and their in-
teractions are depicted in Figure 1. We introduce
technical details for each of the relevant subsys-
tems to illustrate how context is extracted from text,
audio, and video sources.

Context gathering, provides the underlying sys-
tem with the ability to automate or predict be-
haviour. The system can automate its own be-
haviour based on the contextual information it re-
ceived. This is particularly useful when contex-
tual information can be mined to provide the users
with additional information which otherwise would
have been obtained manually or not at all. Context
sensitive actions such as searching the web, dis-
playing and sharing resources, or scheduling tasks
can be automated.

Chat applications are rich in context: they con-
tain video, audio, and in many cases additional tex-
tual information. These sources are largely un-
tapped resources for context. Context in this case
is not limited to the conversation content, but it in-
cludes: location; the people participating; number
of people at each unique connection end; time; vi-
sual queues such as gestures, items or logos; spo-
ken keywords, etc. Extracting this information
can be beneficial in improving the user experience,
and can automate tasks that currently are only per-
formed manually by the users themselves. The
initial prototype used extracted context informa-
tion and displayed conversation relevant informa-
tion, in the form of Youtube videos, on a pane next
to the main chat. Further additions will automate
other tasks such as browsing for web resources and
the display of relevant educational information as



desribed in this paper. In this paper we focus on
three distinct context extraction methods: keyword
extraction from text and audio, as well as face and
logo recognition from video.

3.1 Keyword Extraction from Text

Automatic keyword extraction from text has been
studied extensively over the past decades. For our
application, we selected the Rapid Automatic Key-
word Extraction (RAKE) to extract keywords from
chat messages [15, 16].

RAKE is document-oriented and thus does not
rely on a reference corpus to identify key words.
Consequently, statistical analysis or frequency
analysis is also unnecessary with RAKE. These as-
pects make RAKE very attractive to use in a chat
environment where accuracy and speed are two
crucial metrics.

The purpose of the keyword extractor compo-
nent is to dynamically rank and analyse keywords
obtained from text. To identify meaningful contex-
tual keywords in chat conversations, the analysis is
performed on more than just one message at a time.
Keyword extraction occurs on the last individual
message which was sent, as well as on several most
recent messages. This is necessary because chat
messages are often short. Therefore, by keeping a
record of approximately the 10 most recent mes-
sages we are able to gather keywords represent-
ing the conversation’s context more accurately. For
short messages RAKE often returns no keywords.
This is due to the high frequency of stop words.
Stop words are common elements in text, yet do
not aid in providing unique contextual information.
Examples of stop words are the, a, should, In short
phrases stop words are too frequent while proper
keyword candidates are not present. Subsequently,
a larger message body is constructed by using ap-
proximately the last 10 sent messages. This is sim-
ilar to the 140-160 character length of SMS [17]
and Twitter [18] statements to produce meaningful
messages. Keywords obtained from the single most
recent message are weighted as more importance
and a combined average is returned as a ranked list
of keywords using a custom API.

To leverage greater computational power and
storage resources, the keyword extractor is de-
ployed on the server side. The keyword extractor
component is also a key component of the audio to
text module (cf. Figure 1). The audio to text mod-

ule uses the keyword extractor module to analyse
the textual representation of its audio data.

3.1.1 Modified Use of RAKE

Messages available to us in chat applications are
short, thus, forcing two distinct modifications in the
way we use RAKE. First, each time a message is
sent, our keyword extraction module processes this
message for keywords. Then it processes a his-
tory of generally the 10 most recent messages for
keywords. Any resulting keywords which are com-
mon between the two resulting sets are combined in
their weight in order to signify that they represent
the most recent context of the conversation. While
this does not modify the implementation details of
RAKE, it does modify the return results by using
the RAKE component in a modified way.

The history of the past messages will be stored
external to RAKE in the actual server threads
which are responsible for facilitating communica-
tion between the clients. This is a design and im-
plementation decision. From a design perspective
this ensures that the data is kept close to the source
which generates and uses it. Secondly, it allows
us to only modify the usage of RAKE, not the ac-
tual implementation. Additionally, this also allows
us to weigh the keywords of the last message dif-
ferently based on criteria which are specific to each
conversation rather than using one metric for all on-
going chat sessions. It is conceivable that each chat
session is able to modify the weight it gives to the
keywords of the last chat message based on con-
tent of a user’s personal context sphere rather than
applying a single metric to all users.

The second modification we make is even less
intrusive in nature. Rose describes that only one-
third of the keywords found by RAKE are usually
used [15]. For completeness and to obtain a richer
set of results we retain the full list of identified
keywords for later processing in the chat applica-
tion. This is necessary because in short input texts,
where the number of keywords is often very small.
By default, the system often returns zero or only
one keyword when there are in fact 2 or 3 keywords
present (a small number). In this case it is better to
return 2 or 3 keywords than to return O or 1, which
would correspond to the original third proposed by
Rose. For a larger number of keywords the top third
may be sufficient, though further analysis is needed



to determine when this threshold actually occurs in
typical chat conversations.

One of the inputs to RAKE is a list of stop words,
words that are commonly used but provide no addi-
tional information for context. In personal chat ap-
plications text communication often does not fol-
low a standard language dictionary in terms of
spelling and capitalisation of words. Spelling mis-
takes are frequent and remain uncorrected, abbre-
viations, accronyms or chatspeak (e.g., LOL, BRB,
or AFK) are common. Consequently, we modified
the stop word list to reflect this type of text. Ta-
ble 1 shows the improved result when applying a
different stoplist on even a very simple input text.
Without the modified stop word list, chatspeak is
erroneously interpreted as a keyword.

Table 1: Keywords of the phrase “lol we should go
to San Fransisco and not Town xyz” using a modi-
fied stop word list.

Keywords | chatspeak in StopList
san fransisco, lol, | no

town xyz

san fransisco, town | yes

Xyz

Currently, we alter the stoplist manually to in-
clude words commonly found in chat texts. In the
future, this is will be replaced with an automati-
cally generated stop words list that is also domain
specific to chat. Techniques on how to generate
these stop word lists are illustrated by Berry et al.
[19].

With these modifications in place, RAKE is an
integral part of our keyword extraction compo-
nent. RAKE’s performance and accuracy are es-
sential to the success of the keyword extraction
from textual representations containing context in-
formation. With the modifications in place, we are
able to use RAKE in a chat setting successfully;
a setting which does not necessarily follow exist-
ing rules of grammar, spelling, or even uses words
found in dictionaries.

3.1.2 Limitations of Using RAKE

There are few limitations when using RAKE in our
keyword extraction module. However, these lim-
itations are negligible when considering the rapid
performance and accuracy it provides. The major

drawback of using RAKE on text samples which
are not guaranteed to adhere to proper spelling and
grammar is the need to modify the stop word list
accordingly. However, Berry et al. address this is-
sue by describing methods to automatically gener-
ate stop word lists which are corpus and domain
specific [19].

3.2 Audio as a Context Source

The audio to text component, as depicted in Fig-
ure 1, is not integrated with the other systems that
compose the context extraction engine of this chat
application. Isolating the implementation in such
a way allows us to evaluate the system more thor-
oughly without external factors impacting the re-
sults.

3.2.1 The Technology

Audio to text applications are readily available on
desktops and, in a limited fashion, are integrated
in smartphones. Equivalent open source software,
which can be modified and performs as well as
commercial products, are rare. We selected Pock-
etsphinx released in 2006 by Carnegie Mellon Uni-
versity researchers [20]. Pocketsphinx satisfies our
requirements regarding performance and accuracy;
and was chosen because of its acceptance rate in
the community and the quality of results.

Pocketsphinx is designed to provide real-time
continuous speech recognition. Initially, as
Huggins-Daines illustrates, Pocketsphinx performs
at reasonable real-time speeds even on mobile
platforms by achieving slight sub-real-time peak
performance [20]. Architectural design decisions
to leverage powerful computing resources at the
server side prohibit use of Pocketsphinx in continu-
ous mode. In our design, the transcription of audio
to text occurs at the server side, rather than at the
client side. This design decision forces the chat ap-
plication to provide Pocketsphinx frequently with
small input files containing segments of the con-
versation.

3.2.2 Modifications Specific to PALTask

As mentioned above our application makes two im-
portant changes to the originally proposed uses of
Pocketsphinx. Most strikingly, Pocketsphinx is sit-
uated at the server component of the chat appli-
cation where it receives a wav file containing a



transformed input source of the audio data. We
obtain audio data by stripping audio information
from the video data. Due to resource concerns
this task is performed on the server rather than at
each client. Because this relies on the existence
of wav files there is a short lag needed to create
the file and operate on it. A further delay is in-
troduced by executing Pocketsphinx frequently, in-
curring startup and communication delays between
it and our chat components. This potential loss of
real-time performance needs to be mitigated regu-
larly in order to prevent the processing delay from
increasing. The exact extent of this delay and grav-
ity is something that is currently unknown. How-
ever, it is anticipated that conversations with regu-
lar pauses will not experience this processing delay
to the same extent as rapid content rich conversa-
tions.

Another significant change pertains to the actual
words that this module is tasked to recognize. Ini-
tially we intended to use the provided dictionar-
ies. When testing the system with a phrase con-
taining thirteen words, eight of which were distinct,
the system returned a result containing thirty-six
words. None of the words in the returned result
were found in the test phrase. Effectively Pock-
etspinx returned an incorrect result. Successively
modifying the dictionary by only focussing on a
specific range of contextual topics improved the re-
sults. Moreover, by providing alternate acoustic
definitions of these words we were able to obtain a
phrase containing seven words, all of which were
also found in the original test phrase. Thus our
modifications to the dictionary were successful and
we are currently using a modified dictionary con-
taining information on a variety of topics of interest
which we expect the tool to recognize for context
extraction.

3.2.3 Limitations

To further improve the results of Pocketsphinx we
need to supply it with better acoustic models. This
can take the form of training general acoustic mod-
els or even generating models which are trained
specifically for each user. Prior to effecting these
improvements Pocketsphinx will be limited to only
return the keywords which we explicitly placed in
the dictionary. Thus, limiting the number of words
which we are able to recognize. In addition to hav-
ing only a limited number of acoustic models, dif-

ferent pronunciations, regional dialects and slang
can impede the results.

Another limitation is the fact that we currently
rely on the existence of audio files. Generating
and processing even small audio files is problem-
atic and has its own challenges. First and foremost
this approach introduces a time processing delay.
However using files was an advantage for testing in
order to ensure repeatability of the experiments.

Testing in isolation from other systems, under
controlled conditions, creates limitations. In real-
ity this system will be exposed to a variety of peo-
ple who produce different audio content even when
speaking the exact same phrase.

3.3 Recognizing Faces and Logos

Recognizing faces and logos in video chat will im-
prove the user experience and provide contextual
information to applications such as PALTask. As
the other context extraction modules of this chat ap-
plication we consider this module separately. Re-
viewing existing literature and implementations of
face and logo recognition software we recognize
the need for specific conditions to succeed. These
approaches can also generate false results in their
implementations. Our approach differs from these
existing implementations.

Figure 2 depicts the major steps in our face
and logo recognition algorithm. Face recognition
requires two main steps: First Viola-Jones face
detection using Haar-like features [21], and then
face recognition by Principal Component Analysis
(PCA) [22]. The Viola-Jones face detection is im-
plemented using an OpenCV library [23].

Separate from face detection is logo detection. It
consists of logo location detection within the frame
followed by logo recognition.

3.3.1 Viola and Jones Face Detector

Viola and Jones face detection uses Haar-like fea-
tures, by computing very simple masks over small
regions of a gray-scale image. The crude quality
of the features allows for an extremely fast classi-
fier for detecting faces [21]. This type of classifier
sacrifices accuracy over speed, resulting in the oc-
casional failure to detect a face or false positive by
classifying inanimate objects as faces.
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Figure 2: Block diagram of the face and logo
recognition processing

3.3.2 Face Recognition

Once faces are detected, we attempt to identify
them based on a predefined set of faces. This
set can be context specific, and include cowork-
ers, or team members depending on the contextual
requirements. If faces are not recognized the sys-
tem automatically rejects them for further classifi-
cation.

To train the face recognition system we use 50
images, containing 10 persons with 5 images per
class. The cropped faces captured by the face de-
tector were used as the inputs of the recognition
process; faces are centered and rescaled.

Even images for one person, can vary signifi-
cantly in the color and direction of lighting, thereby
bringing in more scatter within the same class on
top of the variation of facial expressions and angle.
The background could also vary, introducing dif-
ferences between single images of the same class.
To alleviate these effects, some preprocessing step
were performed, including masking that crops out
the face part only, color to gray transformation, and
histogram equalization.

To complete the preparation steps, test images
are projected onto eigenfaces using PCA. From this
we have calculated the Euclidean distance between
test images and training images to find the closest
Euclidean distance which is recognized face.

3.3.3 Logo Recognition

While logo detection once focused on documents
[24], the focus has recently shifted to video [25,26].

For logo detection we collected video of clearly
visible logos from various orientations. Figure 4
illustrates the logo detection algorithm. Initially,
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with SIFT threshold

Logo detected

umber_inliers >
inlier_threshold,

Logo missed or no logo

Figure 4: Illustration of the logo detection algo-
rithm

Scale-Invariant Feature Transform (SIFT) features
[27] are extracted from both the logo and the query
frame. A nearest-neighbour matching between the
features from both images is then performed, fol-
lowed by a ratio test, which will filter the features
by their distinctiveness. A set of matched fea-
tures is forwarded for geometric consistency ver-
ification performed by Random Sample Consensus
(RANSAC) [28]. As a result an affine transforma-
tion is produced which links the sets of spatial fea-
tures from both logos.

4 Evaluation

In this section we evaluate the context extraction
systems. Section 4.1 provides an evaluation of
the component responsible for keyword extraction



from text. An evaluation of the audio to text anal-
ysis module is presented in Section 4.2. Last, we
show an evaluation of our face and logo detection
mechanism in Section 4.3.

4.1 Context Extraction from Text

An evaluation of RAKE has been illustrated by
Rose [15]. Of note is that this evaluation was based
on text sources which were almost guaranteed to
follow proper grammar and spelling rules, two fac-
tors which we have identified as posing problems to
using RAKE with standard input sources. Metrics
showcased by Rose, such as precision, F-measure
and recall, demonstrate that RAKE provides re-
sults comparable and often exceeding those ob-
tained with existing state of the art techniques [15].
RAKE’s evaluation has been shown in [15], which
means the concept and algorithm of RAKE is
demonstrated to be fast and accurate for document
oriented analysis. Our use case is slightly different
in the sense that input text is often short, and not
guaranteed to follow accepted spelling and gram-
mar rules.

Thus, we analysed RAKE in three distinct
modes:

¢ RAKE without modified stoplist
¢ RAKE with modified stop list

e RAKE with text obtained from Audio to Text
module

First, RAKE when operating with the standard
stop list is evaluated on input texts commonly
found in chat messages. The characteristics of
these input texts are such that they contain chat-
speak terminology, are relatively short (less than
20 words) and occasionally contain spelling mis-
takes. When tested with these input texts we found
that RAKE evaluates these terms very often as key-
words despite them actually being stop word candi-
dates. This is observed when chatspeak is injected
in the text. Chatspeak is often recognized as a key-
word. Likewise misspelled stop words are erro-
neously identified as keywords. It total, this leads
to incorrect results for the system.

Secondly, we evaluate RAKE with a modified
stop word list. We manually expanded the stop
word list, words which are common and generally
not relevant to be uniquely identified as a mean-
ingful keyword. The expansion included chatspeak

terminology and some misspelled variations of ex-
isting regular stop words. Applying RAKE to these
same input texts results in a much improved per-
formance. Now only actual keywords were suc-
cessfully identified. Misspelled words found in the
stop word list and chatspeak was correctly ignored
and not presented as keywords. This approach re-
quired us to manually append the stop word list,
but we see no reason to believe that this can not be
achieved automatically in the future.

Lastly, we tested the usability to RAKE when
the Audio to Text module provided the input text
to the keyword extractor module. A typical input
text in this scenario does not contain spelling mis-
takes because the input text is obtained from a dic-
tionary file. However, the sentence structure is un-
reliable and sometimes erratic. This causes words
to be in different positions in a sentence simply be-
cause of the audio to text module’s performance.
Additionally, in the overall system, the lack of 100
percent accuracy in audio to text transformations
means that while RAKE performs correctly, the re-
sults actually do not contain contextually relevant
keywords. This however is a limitation of the Au-
dio to Text module. Until this module improves,
we give lower weight to keywords obtained via this
module and instead promote the results obtained
via text input.

Overall the keyword extraction module’s did not
require major modifications to be used by PALTask
and the existing prototype. Small modifications in
usage and input parameters were carried out to en-
sure accurate performance within a chat applica-
tion. Challenges arising from pure text input in chat
applications are overcome by modifying stop word
lists, anticipating and internally correcting spelling
errors, and by keeping a history of recent chat mes-
sages to present RAKE with a larger body of text.
Input from the Audio to Text module is problematic
purely because of the unreliability of the Audio to
Text module. Poor quality results from the Audio
to Text module, subsequently result in incorrect re-
sults from the keyword extractor. To compensate
for this, results are ultimately weighed differently
to address their high degree of inaccuracy in the
current implementation.

Lastly, since pure text input is relatively short.
RAKE is often unable to discern keywords due to
the high ratio of stop words. We find that keep-
ing a history of recent past messages improves per-
formance significantly since it increases the input



space on which RAKE can perform analysis. It is
beneficial to additionally weigh keywords higher
when they are found in the most recent message
provides further benefits to obtaining relevant con-
textual keywords.

4.2 Context Extraction from Audio

As mentioned in Section 3.2, we are using CMU’s
Pocketsphinx software as a foundation for the Au-
dio to Text module. Pocketsphinx was designed to
work with a medium size dictionary and much of
the original evaluation is based on execution time
performance [20]. While execution time is a crit-
ical criteria, we focus on accuracy of the returned
results.

Initially we tested Pocketsphinx in its unmodified
state. Further we did not create custom acoustic
models, grammars, or train the system to a partic-
ular speaker. The result was unusable in our appli-
cation. We provide a wav file containing a phrase
composed of thirteen words to Pocktsphinx. At first
the application returns thirty-six words, none of
which are in the supplied phrase. Altering acoustic
models or training the system to particular speak-
ers is not realistic for applications which are used
by diverse groups of people. As an alternate ap-
proach to this method, we modified the dictionary
file. This file contains words which the system is
capable of recognizing. Altering this file allowed
us to provide a variety of distinct definitions for
the words we were interested in. We also reduced
the dictionary size considerably to less than one-
hundred. With these modifications we were able to
obtain reasonable results for the test phrase. Now
the system returned seven words, all of which were
in the input phrase.

Since this component of our chat application is
tasked with obtaining keywords from the audio, we
forward the extracted text to our keyword extrac-
tor. The keyword extractor’s results depend on the
quality of the input text provided by the audio mod-
ule. Thus the overall quality of extracted keywords
is dependant on the quality of the Audio to Text
module. Poor transcriptions from audio to text will
ultimately result in poor quality of the returned key-
words from this module. Improving the Audio to
Text module is expected to increase the quality of
results significantly. At the current moment, the
results obtained from the audio to text module are
treated with less significance or weight in compari-

son from keywords obtained solely from text. This
is done to prevent incorrect results from tainting
the overall user experience by augmenting irrele-
vant information to the chat application.

4.3 Context Extraction from Video

To evaluate the video face and logo recognition
module, we need to regulate all thresholds and
parameters that impact this systems performance.
Different criteria settings affect positive identifica-
tion of faces and logos, but are often coupled with
an increased number of false positives in the de-
tection phase. Consequently, we adopt thresholds
designed to avoid false positives.

Our implementation was tested contained 120
face images of 12 different people, two of which
were not in our database, and a set of 20 University
of Victoria logos, 5 of which contained additional
logos as well. The video was captured at 720p high
definition and 30 frames per second with total dura-
tion of 3 minutes. The Euclidean distances between
the test image coordinates and the training image
coordinates are calculated and the closest training
image is picked out. A threshold is set such that
if the closest distance is above the threshold, the
test face is considered unrecognized. If the value is
below the threshold the face is associated with the
identity of the closest match. By tuning the thresh-
old value, we are able to achieve a total correct rate
for positive matches of up to 94%.

Performance in terms of execution time is also an
important evaluation criterion. The current imple-
mentation uses the Matlab-based VLfeat [29] im-
plementation to implement a scale invariant feature
transform algorithm. Further, OpenCV is used for
face detection [23]. The complete face and logo
recognition system was implemented and tested
under MATLAB. While the performance of this
implementation is acceptable, speed improvements
are expected when transitioning this code to a C++
implementation once the prototype evaluations are
concluded.

5 Conclusions

Using the keyword extraction modules as well as
the face and logo recognition engines we can use
the obtained information to further augment the
chat environment for each user. When done cor-



rectly, by extracting and detecting the correct con-
text, we hope to be able to improve the user’s ex-
perience by automatically providing a rich set of
additional information.

Evaluating the individual context extraction
components has highlighted that several aspects
of them perform well even at a prototype stage.
Howeyver, this evaluation has also shown that some
aspects, particularly audio to text conversions,
present challenges which negatively impact the
perceived results. By separating the evaluation of
these systems we were able to isolate problem ar-
eas in terms of quality of results and other perfor-
mance metrics. From this analysis it became ap-
parent that the audio to text module requires sig-
nificant improvements, while the text keyword ex-
traction module only requires minor alterations to
satisfy our use case.

Obtaining contextual information from sources
available in chat applications, video, audio and text,
will enable us to selectively augment the user ex-
perience with useful information. This paper has
highlighted several aspects of such as system and
provided an overview of how context extraction can
be carried out. Combining the obtained context in-
formation with a users personal context sphere is
also expected to further increase the usefulness of
such a chat application.

6 Future Work

Personal communications applications have a long
history. Their basic functionality has remained
throughout the years. Recently, improved tech-
nology such as network bandwidth and processing
power have propelled the technology to expand be-
yond purely facilitating communication. Context
awareness and augmentation of user experiences
with additional information has become available.
In the future we plan to fully integrate the compo-
nents described in this paper to a fully functioning
chat application. Several aspects of this are already
integrated in a prototype [1]. Future work also in-
cludes an attempt to improve the quality of the re-
sults of each of the individual components. Pri-
marily the audio to text module requires changes to
provide improved results. At the moment the en-
tire system is in an early experimental stage. Like-
wise the keyword extraction from text will be im-
proved by automatically configuring the system to
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use smart stop word lists which will not depend on
correct spelling and usage of words found solely in
dictionaries.

Additionally, to provide personalized informa-
tion augmentation we plan to incorporate the users
personal context sphere [2, 3]. Integrating the per-
sonal context sphere enables the chat application to
customize not only the results, but also to influence
the importance of selected aspects of extracted con-
textual keywords to improve user experience.

Finally, context extraction, as described here,
from video and audio is not limited to chat appli-
cations. Use of these techniques in other domains
may provide viable applications. This includes pro-
viding this kind of context gathering to classroom
settings or similar information exchanges.

We have chosen to apply context extraction of
text, video and audio to personal communication
applications. However, the techniques described in
this paper can be applied to a wide range of sce-
narios which are not necessarily limited to chat
applications. The method for object and face
recognition in PALTask can be applied generally
in other context based detection and recognition
tasks. Likewise, the text extraction offers an al-
ternative for statistical analysis which often require
reference texts as a means of obtaining valuable re-
sults. Speech recognition work on static context
has been done before with Siri and Google Now,
but dynamic context extraction of audio can be ex-
panded further to near real time levels.
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