ACM SIGSOFT Software Engineering Notes

Page 31

January 2013 Volume 38 Number 1

Exploring Initial Challenges for Green Software Engineering

[Summary of the First GREENS workshop, at ICSE 2012]

Patricia Lago Rick Kazman Niklaus Meyer

VU University Amsterdam University of Hawaii Green IT SIG
The Netherlands USA Swiss Informatics Society,
p.lago@vu.nl kazman@hawaii.edu Switzerland

Maurizio Morisio
Politecnico di Torino, ltaly
maurizio.morisio@polito.it

ABSTRACT

The GREENS workshop provides a forum for practitioners and
academics to share knowledge, ideas, practices and current results
related to green and sustainable software engineering. This first
workshop was held at ICSE 2012 in Zurich, Switzerland. It fea-
tured a keynote talk, twelve research position statements and two
breakout sessions that discussed topics that ranged from bring-
ing sustainability and energy efficiency into all software lifecycle
stages, to green measures and estimations, practices, notations,
and tools to both greening the software engineering process, and
greening the resulting Information and Communication Technol-
ogy systems. This report presents the themes of the workshop,
summarizes the results of the discussions held in the breakout
sessions, as well as the identified research challenges.

Categories and Subject Descriptors

D.2 [Software Engineering]: Miscellaneous; D.2.1 [Software
Engineering]: Requirements; D.2.8 [Software Engineering]:
Metrics—complexity, product, process; D.2.10 [Software Engi-
neering): Design

Keywords

Energy efficiency, sustainability, software engineering, green IT

1. INTRODUCTION

Information and Communication Technology (ICT) accounts for
approximately 2% of world CO2 emissions [2], a figure equiva-
lent to aviation, according to Gartner estimates [4]. In fact, this
2% includes only the in-use phase of hardware: in the remaining
98% software both operationalizes the private sector in doing its
business and the public sector in supporting society, as well as
delivering end-user applications that permeate our personal lives.
Software can contribute to decrease power consumption (i.e. be-
come greener) in at least two ways. First, by being more energy
efficient, hence using less resources and causing fewer CO2 emis-
sions. Second, by making its supported processes more sustain-
able, i.e. decreasing the emissions of governments, companies and
individuals. To this end, enterprise software must be completely
rethought to address sustainability issues and support sustainable
& innovative business models and processes.

Creating greener software has been the focus of GREENS 2012 [1]
with the special theme “Green Knowledge for Sustainable Soft-
ware Engineering.” GREENS aims at bringing together software
engineering researchers and practitioners to discuss the state-of-
the-art and state-of-the-practice in green software, as well as re-
search challenges, novel ideas, methods, experiences, and tools to

DOI: 10.1145/2413038.2413062

Hausi A. Muller

University of Victoria, Canada
hausi@cs.uvic.ca

niklaus.meyer@acm.org

Frances Paulisch
Siemens, Germany
frances.paulisch@siemens.com

support the engineering of sustainable and energy efficient soft-
ware systems.

2. THE KEYNOTE TALK

The keynote was given by Pia Stoll (principal scientist at ABB
Corporate Research, Sweden) on Sustainable development of a
Residential Demand Response System [3]. This inspiring keynote
stressed the need for reliable sustainability indicators required to
assess the level of sustainability in system development. To that
end, a sustainable development framework has been explained
(yielding four dimensions, these being Scope, Business, Systems
and Technology). Pia illustrated with one large case study (the
Stockholm Royal Seaport) the relation between sustainable devel-
opment (defined as the development that meets the needs of the
present without compromising the ability of future generations to
meet the needs of the future) and two key concepts: the concept
of needs, and in particular the essential needs of the world’s poor,
to which overriding priority should be given; and the idea of limi-
tations imposed by the state of technology and social organization
on the environment’s ability to meet present and future needs.

3. BREAKOUT SESSIONS

The workshop accepted twelve papers' for inclusion in the pro-
ceedings and two posters. The papers can be divided into two dis-
tinct categories: those focusing on energy efficiency (EE) and
discussing how EE of software can be estimated, reported upon,
and monitored; and how software engineering can be blended with
green thinking at various levels of abstraction (from design pat-
terns to architecting and economic estimations). The authors of
accepted papers were invited to present their ideas to the work-
shop in the form of a position statement. The topics identified as
most interesting by attendees have been: (1) Best practices for
sustainable and energy efficient software (engineering); (2) Green
software measures, including metrics and Key Process Indicators
(KPIs); and (3) Green software life cycle. The latter two topics
have been selected for further discussion in the breakout sessions,
and the following describes the discussion outcomes.

3.1 Green Software Measuress

The starting point of discussion in the session is to consider mea-
sures for Green IT as a non-functional property of software (or of
systems including software).

The traditional list of non-functional properties is (using standard

Papers accepted for GREENS 2012 are available from the ACM
Digital Library.

http://doi.acm.org/10.1145/2413038.2413062



ACM SIGSOFT Software Engineering Notes

ISO 9126 and later ISO 25010) efficiency, compatibility, usability,
reliability, security, maintainability and portability. The stan-
dard does not explicitly mention green properties. Any property
related to greenness could be either added as a decomposition
of efficiency, or added as a new high level property. Influenced
by the opening keynote, the breakout session reaches consensus
on proposing a new high level, non-functional property of soft-
ware systems, called sustainability. Among others, sustainability
includes resource consumption (such as energy), greenhouse gas
emissions, social sustainability, and recycling.

The discussion further focused on resource- and energy consump-
tion, in the context of software systems per se. In other words
software for greening (i.e. any software that controls, directly or
indirectly systems consuming energy, such as cars, buildings, fac-
tories) is left out of the discussion. In this context the session
identifies two categories of measures: basic, and derived. The
basic measures are energy [Joule], power [Watt], gas emissions,
cost. All these measures are already established. Derived mea-
sures are, at high level, efficiency and productivity. Productivity,
in this context can be defined as useful work per Joule. This is
still a high level measure, since it requires defining useful work.
The session pushes the community in defining useful work in dif-
ferent contexts. For instance the business community has pro-
posed business transaction per Joule, the algorithm community
has proposed sorted records per Joule. Another derived measure
is greenhouse gas emission per useful work. The session promotes,
also at this regard, work to detail further this basic measure. The
session agrees that the interplay of software design and hardware
design, and their effect on derived measures should be studied
further. Besides, the interplay of hardware and software lifetimes
should be analyzed too. In many cases new, more advanced soft-
ware programs require new hardware, and similarly new hardware
requires new software.

The session proceeds in discussing methodological issues on mea-
suring sustainability. The session pushes the community to agree
on procedures to achieve controllability and repeatability of mea-
sures in this context. It is clear that measuring all combinations of
hardware and software is unfeasible. Accordingly, a key problem
is the definition of standard (or at least meaningful and repeat-
able) configurations of hardware and software to be measured.

Linked problems are the definition of:

e Standard layers and interfaces (a call to a kernel mode func-
tion from an application and the related consumption should
be allocated to the application or to the OS?)

e Standardized ways of accessing energy measures from hard-
ware

e Standardized layers on hardware components and drivers
(disk, memory, wi fi card etc)

e Standardized usage scenarios, until the definition of mean-
ingful benchmark scenarios. The starting point can be ap-
proaches like TPCEnergy, JouleSort, SpecPower, SpecJVM.
However, they are not specific to sustainability, use often as-
sumptions on the context that should be verified, and usu-
ally consider server-side software only.

e Procedures to support repeatability and controllability
e What hardware/software configurations (“standard”)

— Standardized way to access energy measures from hard-
ware (e.g. virtual machine)

DOI: 10.1145/2413038.2413062

Page 32

January 2013 Volume 38 Number 1

— Limits of application (call to kernel mode function is
application or OS?)

— Devices / components (besides CPU)

e Standardized scenarios and benchmarks: there exist already
a significant number of software packages that estimate the
power consumption of computers. Examples include TPC-
Energy, JouleSort, SpecPower, SpecJVM. Most of them,
however, rely on gross approximations and assume contex-
tual configurations that are embedded, implicit and not spe-
cific to energy consumption. While these software packages
are a step forward toward estimating the level of greenness of
software, they do not yet allow to univocally link a certain
software (functionality) to its accountable measure. The
next generation benchmarks need to be configurable in both
context and observed usage/execution scenarios. They also
need to clearly identify which software component is respon-
sible for which resource allocation and hence which rate of
the total energy consumption.

e Absolute measures, what they mean? Better to use relative
(and reliable) measures.

NOTE: The above can change hugely depending on the node con-
sidered (mobile phone vs. data center).

3.2 The Green Software Life Cycle

The discussion naturally converged to a focus of software as object
of the optimisation with regard to impacts on sustainability. The
optimisation potential can be analysed in terms of either energy
savings (green IT), or business processes and non-functional re-
quirements that are aligned with sustainability principles (green
by IT). The current understanding of green and sustainable soft-
ware includes both:

e a relative understanding of sustainability — a function shall
sustain over a specific time; a completely neutral definition
without relations to “higher” values; and

e an absolute understanding of sustainability — the software
system or service shall contribute to preserving environmen-
tal and human well being.

These two understandings have to be clearly distinguished.

The major challenge in kickstarting sound research in green soft-
ware is to investigate how to break down the definition of sus-
tainability so that it can be applied to software engineering. Ac-
cordingly, we need to find out how to break these two abstract
definitions down to software characteristics, how to determine the
added value, and how to trace it back to software.

After having agreed on a common, reference definition of what
sustainability means in and for software engineering, the discus-
sion led to identifying further challenges ahead:

On quality: How does sustainability differ from other —ilities?
So far, we know that we have to look at longer time horizons
to draw conclusions, and that it is a complex characteristic
that can be analysed for internal quality, external quality,
and quality of service.

On requirements: What are the types of requirements that lead
to sustainable software solutions? How do they differ from

http://doi.acm.org/10.1145/2413038.2413062



ACM SIGSOFT Software Engineering Notes Page 33 January 2013 Volume 38 Number 1

“traditional” Non-Functional Requirements (NFRs)? How
does a “sustainable” business model translate into software
requirements? Can we imagine NFRs that work against
planned obsolescence? For example, can services be offered
so that a lower level of quality of service can both use old
hardware at a more economic rate, and in doing so lead to
less e-waste?

On design: Can we find principles for engineering sustainable
software as, for example, available for dependable systems?
Can we learn from principles used for and in performance,
safety, or usability? What are the green design patterns that
offer recurring and generally reusable solutions for sustain-
able and/or energy efficient software?

For any of these challenges and questions, it is crucial to distin-
guish between the code and its functionality in order to not mix
sustainable software and software for sustainability.

4. ACKNOWLEDGMENTS

GREENS is part of the dissemination activities of the Dutch
Knowledge Network Green Software. We extend our thanks to
those who have participated in the organization of the workshop,
and particularly the program committee members. We further
thank Qing Gu and Giuseppe Procaccianti for their feedback on
this report.

S. ADDITIONAL AUTHORS

Additional authors: Giuseppe Scanniello (Universitd della Basili-
cata, Italy, email: giuseppe.scanniello@unibas.it), Birgit Pen-
zenstadler (Technische Universitidt Miinchen, Germany, email: pen-
zenst@in.tum.de) and Olaf Zimmermann (ABB Corporate Re-
search, Switzerland, email: olaf.zimmermann@ch.abb.com).

6. REFERENCES

[1] Workshop on Green and Sustainable Software (GREENS).
http://greens.cs.vu.nl.

[2] C. Pettey. Gartner estimates ict industry accounts for 2
percent of global co2 emissions.
http://www.gartner.com/it/page.jsp?id=503867, 2007.

[3] P. Stoll. Blog on: Sustainable development of industrial
software systems. http://piastoll.com.

[4] UNEP/GRID-Arendal Maps and Graphics Library. World
greenhouse gas emissions by sector. http://maps.grida.no,
2009.

DOI: 10.1145/2413038.2413062 http://doi.acm.org/10.1145/2413038.2413062





