RPC Automation: Making Legacy Code Relevant

Andreas Bergen, Yagiz Onat Yazir, Hausi A. Miiller, Yvonne Coady
Department of Computer Science, University of Victoria, Canada
{andib, onat, hausi, ycoady} @cs.uvic.ca

Abstract—Due to the well-known issues with Remote Proce-
dure Calls (RPC), the rather simple idea of modifying legacy
applications—that have low spatial locality to the data they need
to process—to execute all of their procedures via RPC is not
a feasible option. A more realistic and feasible alternative is
to provide a self-management mechanism that can dynamically
monitor and alter the execution of an existing application by
selectively modifying certain procedures to execute remotely
when it is necessary to improve spatial locality. In this paper
we describe the motivations behind such a self-management
mechanism, and outline an initial design. In addition, we in-
troduce our vision for the required profiling component of these
applications. As such, we introduce the Automated Legacy system
Remote Procedure Call mechanism (ALRPC). It automatically
converts existing monolithic C applications into a distributed
system semi-automatically. Thus automation is a key criterion for
successfully competing with existing remote procedure tools for
legacy applications and with newer solutions such as SOAP and
REST [12], [21]. ALRPC is the core component to convert mono-
lithic applications into distributable self-adaptive RPC systems.
The empirical results collected from our initial experiments show
that our mechanism’s level of automation outperforms existing
industry strength tools and improves development time. At the
same time our mechanism is able to correctly function with a
significant code base and shows acceptable performance in initial
tests.

Index Terms—Self-managing system, cloud computing, large
data, remote procedure calls

I. INTRODUCTION

As a result of the paradigm and trend shifts in modern
computing over the last decade, a number of fields gained
special importance and prominence. Cloud computing, remote
sensing, social networks, health information systems and sci-
entific computing are a few of these fields. A remarkably
common concern in these fields centers around the need to
process vast amounts of information. Accordingly, with the
growth in data sets and individual pieces of information to be
processed, applications are facing practical challenges within
the confines of today’s technological realities [9].

Despite improvements in network technology, transferring
and processing the required amounts of information is still
and always will be an issue with respect to practical metrics
such as bandwidth and latency. Performance penalties can be
particularly severe in the cases where the spatial locality of
application and the data to be processed are not provided
by default. Spatial locality here means that applications and
their data are separated by few, if any, routing hops and low
network latency. Moreover, the performance penalty can be
highly variable due to external influences on the network traffic
and network connectivity [20]. For instance, scientific data that

is recorded in one location is stored presumably in nearby
data centers. Researchers around the world requiring access
to the data are now faced with the challenge to quickly and
efficiently move the data from the data center to their own
location for analysis or perform limited analysis remotely.
Even when computation is done on machines (worker-nodes)
hosted in the same data center, data movement requires
bandwidth resources. Identifying and addressing these issues
is challenging with traditional models [10]. As a result, it is
becoming necessary to consider alternate approaches where
pieces of application code are carried to where the data exists.

Traditionally, when an application requires access to data,
the data is obtained and moved to the physical machine on
which the application resides. This commonly accepted model
was altered in the early 1980s by the introduction of Remote
Procedure Calls (RPC)—the original ideas date as far back as
the mid-1970s [6]. The main purpose of RPC is to provide
a mechanism which facilitates remote execution via migration
of code—in the form of procedures—to the location where the
data exists [6]. The remote execution’s results are returned to
the caller and the caller’s system resumes execution [6], [22].

Key ideas of remote procedure calls have been extensively
studied and discussed since the 1980s. In the 1990s, several
small companies and large industry leaders alike actively
supported development to overcome limitations of these sys-
tems [7], [16], [19]. Throughout RPC’s existence detractors
have been pointing out conceptual problems, technical chal-
lenges and performance weaknesses [23]. In summary, RPC
is considered complex and cumbersome, requiring additional
description languages and code changes [25], [26]. Further-
more, latency, security and legislative restrictions pose further
challenges. Due to these issues, the rather simple idea of modi-
fying legacy applications—that have low spatial locality to the
data they need to process—to execute all of their procedures
via RPC is not a feasible option. A more realistic and feasible
alternative is to provide a self-management mechanism that
can dynamically monitor and alter the execution of an existing
application by selectively modifying local procedure calls to
execute remotely when it is necessary to improve spatial
locality. Facilitating such a level of self-management requires
dynamic monitoring and profiling of metrics such as latency,
security and privacy in order to determine when an application
will chose to execute remote procedures instead of following
its traditional behaviour.

In this paper we describe the motivations behind such a self-
management mechanism for legacy applications, and outline
an initial design. We focus exclusively on legacy applications

in C with available source code. While our mechanism is
designed for legacy applications faced with issues of security,
latency and jurisdictional restrictions, our evaluation is focused
solely on latency. In addition, we discuss our vision for the
required profiling component of these applications. While la-
tency, security, privacy and performance are important aspects
of these systems, this paper focuses specifically on the static
analysis mechanism. As such, we introduce our Automated
Legacy system Remote Procedure Call mechanism (ALRPC).
It automatically converts existing monolithic C applications
into a distributed RPC system with minimal programmer
interference. Automation is critical to successfully compete
with existing remote procedure tools for legacy applications
as well as to be able to compete with newer solutions such as
SOAP and REST [12], [21]. ALRPC is the core component to
convert monolithic applications into distributable self-adaptive
RPC systems. The empirical results collected from our initial
experiments show that our mechanism’s level of automation
outperforms existing industry strength tools and improves
development time. At the same time our mechanism is able
to correctly function with a significant code base and shows
acceptable performance in initial tests.

The remainder of the paper is organized as follows: We
present a problem description in Section II to motivate the need
for our approach. Then Section III situates our contribution
among related works. Sections IV and V will showcase an
overview of the system and some experimental results, before
Sections VI and VII elaborate on the current limitations of the
system and conclude the paper.

II. PROBLEM DESCRIPTION

Scientific projects, businesses and individual devices such as
smart phones, tablets and embedded devices are collecting and
retaining unparalleled amounts of data [15]. Initially, spatial
locality of the data cannot be assumed. Obtaining a local copy
of this data requires time consuming network communication.
The movement of data is limited by the transmission rates
between the server and the analysis machine. This in turn
is dependent on the client machine’s network and bandwidth
capabilities, both of which can vary greatly [5]. This cost is
incurred in the form of latency.

Secondly, this existing approach is also very likely to incur
further costs because providers such as Amazon’s EC2 have
payment models where one is charged for moving data as
well as for storage requirements [2]. Following this approach
would duplicate a data file’s storage requirements, at least
temporarily, and incur costs from simply moving data to the
analysis server. At some point this network communication
reaches a threshold in terms of time or monetary cost which
makes it no longer feasible for the system to move the data
to the computation server. For instance, consider geographical
information systems’ (GIS) shared libraries (e.g. Geospatial
Data Abstraction Library (GDAL)) and the common use case
of GIS data files. These files are approximately 250MB in
size. 250MB of data, in specific cases, represent information
for a tile which is 25km X 25km and stored with lossless

compression in 5 bands of light. Mapping any sizable geo-
graphic region with this method results in large amounts of
stored data. To move this data is costly and prohibitive.

As an alternative, any RPC system reduces the size of
data which has to be moved. Instead of moving data itself,
which can be rather large, a single function can now be
moved. Moving a function for remote execution occurs only
on an on-demand basis and is application and use case
specific. Any single function rarely exceeds a few kilobytes
in size, thus reducing the transfer costs in fiscal and temporal
terms. However, the question remains: what functions of an
application should be moved to the server which is located
closer to the data? By identifying candidate functions using
appropriate criteria one can keep data movement between
servers to a minimum while ensuring that the process of
executing functions remotely is as automated as possible.
Existing state of the art RPC tools for legacy applications
require large manual overhead and often refactoring of existing
code bases. In addition to this overhead, programmers are
often required to produce description language files for these
tools. Thus programmers chose other approaches instead of
RPC solutions [23], [25], [26].

Obtaining access to data is not the sole reason for converting
an existing monolithic application into a distributed system
using remote procedures. Another scenario is centred around
log files. Servers always produce log files, whether they
originate from applications or the kernel itself. These log files
are usually moved to a central server for storage or analysis.
The logging functionality which is gathering the information is
required to be situated on the actual server where it performs
logging. Yet, the function which writes the information onto
disk in a log file can be a remote procedure. This would
allow all servers to automatically write their log files to
a central server, pre-empting the need for data movement
later and making the log collection scripts obsolete. However,
remote procedures are not a panacea [23]. Many argue that
remote procedures should never be used on networks which
are exposed to outside traffic [18]. For example, there are
many functions in the OpenSSL shared libraries which are
suitable for conversion into remote procedures from a technical
standpoint. Yet, the reasoning for doing so would defeat the
purpose of the function itself because sending data over an
unsecured network to encrypt the data is counter intuitive. In
other words, simply because an analysis of a system suggests
that functions can be converted into remote procedures, it is
not implied that these functions actually should be turned into
a remote procedure.

A further advantage of distributed systems is validation
and verification of computational results. In particular asyn-
chronous execution of local and remote procedures makes this
possible. An application can start both a local function call and
one or more remote function calls with the same input data.
This is useful for two reasons. Firstly it allows the program to
verify that the computation was carried out correctly by taking
the aggregate of returned answers as the true value. If two or
three answers from different sources form a consensus then

it is likely that the computation returned the correct results.
On the other hand this is a practical approach for compute
intensive operations. The local machine may not be powerful
enough to compute the results in a timely manner. This is
exacerbated when there are large data sets which have to be
moved to the local machine. In our distributed system, the
application can start local and remote function calls and accept
the first returned result as the approved response. Thereby
an application can utilize superior computational power of
remote servers of data centers. This is similar to map reduce
approaches, however our existing tool allows the automatic
modification of existing legacy applications to obtain the same
leverage [13], [27].

Lastly, jurisdictional obstacles supersede technical chal-
lenges. Some data is simply not allowed to leave a given
jurisdiction. Yet at the same time access to the data is not
prohibited. This scenario is common when dealing with data
belonging to governments. Privacy legislation prevents storage
of this data in another jurisdiction, yet access to the data is
open to the public. An application can be distributed to have
the function which accesses the data in the same jurisdiction
as the data. At the same time, the bulk of the application can
be run from a different jurisdiction. In other words, the reasons
why a previously monolithic application would benefit from
a dynamic conversion to a distributed system using remote
procedure calls are closely tied to: (1) latency, (2) security,
and (3) jurisdiction.

-—

Program

Process
l Boundary

Remote
Threshold Ves Function

lm f

Local
Function

Data

Fig. 1. Decision to move data to local server or to use remote function is
based on threshold (Figure grounded in GDAL use case)

These issues point to the need for a self-management
mechanism that can equip a legacy application with the ability
to dynamically monitor, profile and alter its execution by
selectively modifying certain procedures to execute remotely
when it is necessary or suitable to improve spatial locality.
The required self-management mechanism should capture the
changes related to the three issues mentioned above, and de-
cide whether it is necessary to alter the program’s execution to
use a remote function. Figure 1 illustrates the decision making
structures and actions of such a system. In this paper, we
propose and outline such a self-management mechanism, and
focus on the automation of converting existing applications
into distributable RPC systems.

III. RELATED WORK

Service-oriented architecture (SOA) is often used to solve
spatial distribution of data and the related challenges of

self-adaptive systems described above. SOA approaches also
acknowledge that hierarchically structured, stable monolithic
systems have moved to distributed federated systems because
of changes in technology, user requirements, and legal re-
quirements. SOA is one abstraction used to address this chal-
lenge [14]. Adding self-adaptive deployment and configuration
models of SOA systems addresses the challenges of networked
distributed systems [24]. Similarly Cardinelli proposes self-
adaptive models to dynamically react to environment changes
to increase a system’s dependability [8].

Increasingly complex systems led to discussions of soft-
ware reconfiguration patterns for dynamic software adaptation;
Gomaa describes patterns for transactions where more than
one service needs to be updated and coordinated [17]. Other
methodologies to integrate design decisions with self adaptive
requirements of the system are also proposed to support goal
based approaches which allow system modification at run
time [3]. Bencomo proposed a slightly different approach
where a more formal methodology is used to describe a
solution more closely linked to that of middleware [4].

SOA exposes a service to the application while not reveal-
ing any implementation details. Middleware approaches only
replace communication methods of SOA applications and not
the conceptual model. Our approach provides the ability to
control the communication method, the self-adaptive nature
of the application and the exact implementation of the remote
procedure while at the same time overcoming challenges
common to SOA and middleware approaches.

Finally, our proposed solution differs from approaches
which target mobile applications and use complete thread
migration—such as CloneCloud [11]—by using RPC mech-
anisms to redirect a call to a different execution environment
instead of migrating threads to a point of execution.

I'V. PROPOSED SOLUTION

This section introduces each of the architecture components
required to build a system which dynamically reconfigures
itself from a monolithic into a distributed application.

A. Static Analysis

We developed a proof of concept implementation which
enables automated generation of distributed RPC systems.
Our tool, Automated Legacy code Remote Procedure Call
(ALRPC), is able to semi-automatically convert a monolithic
application into a distributed system. ALRPC, like any RPC
mechanism abstracts the burden of programming networking
code. With ALRPC a programmer is able to automatically
extract the desired functions from the program and convert the
system into one using remote procedure calls. This conversion
follows a static analysis of the application’s code base prior
to run time.

ALRPC generates, code stubs for client and server, as well
as communication procedures automatically. The differentiat-
ing feature of ALRPC compared to other Remote Procedure
Call tools written for C applications, such as RPCGen [1],
is its degree of automation. Automation is the primary goal.

As such, the intended use case is to provide ALRPC with an
existing monolithic application to transform it automatically
into a distributed system. Generally a programmer is only
required to provide ALRPC with a header file that includes the
procedures one wishes to execute remotely. From this input
alone, ALRPC generates client procedure stubs, networking
code, server procedure stubs, marshalling and unmarshalling
code automatically. The final system at this stage does not
differ significantly from other RPC systems, barring the au-
tomation which generated it.

The purpose of the header file is to allow ALRPC to perform
a static analysis of the given source code to determine function
signatures. This analysis is necessary to identify data types and
names of the procedures’ parameters, as well as the names
of the procedures themselves. These pieces of information
are procured and further used by existing Linux tools and
ALRPC itself. Figure 2 illustrates the process, actors, input and
output files involved when using the entire tool chain centered
around the ALRPC mechanism. A target header file containing
the definitions of the functions which one desires to execute
remotely is preprocessed by GCC. Then the preprocessed file
is parsed by ctags to extract the function signatures. These
signatures are in turn provided to Python modules of ALRPC
which analyse them and automatically produce C code for a
fully functional distributed system which has the same purpose
as the original monolithic system.

Special care is taken to ensure that the selected functions are
suitable for remote execution. Criteria include data restrictions
(legal or size), function parameter types (not all types are
acceptable) and calling frequency.

prog.c preprocessed_target.h

| lﬁrgel.hm I

serialize.c

clags_output

serialize.h

local_impl.c

prog.c

local_impl.h local_impl.h

Fig. 2. Static control flow of ALRPC tool chain

B. Self-Adaptive Dynamic Component

ALRPC is the mechanism which enables our proposed
system to be created with minimal and simple programmer
interaction from a static analysis of the application’s code
base. Through it we are able to turn a monolithic application
into a distributed system with far more ease than with any

competing RPC tool for legacy systems. But in order for
the distributed system to function efficiently we require an
additional component: the profiler. The profiler monitors all
metrics for threshold values which decide on using local or
remote function calls. Metrics for such a profiler are centered
around data models, latency and legal requirements. The
profiler will, application specific, detect the latency of file
transfers for example. Additionally, data models can also be
used in the profiler to determine when data cannot be moved
to the application due to legal constraints. In both cases the
profiler could trigger the execution of a remote procedure.

Specifically, once a latency threshold is reached, the ap-
plication will no longer attempt to transfer the data to the
application, instead a switch forces the application to use a
remote function. The intended benefit here is that the time
for invoking a remote function and the function completion
time are less in sum, despite the networking component, than
a transfer of the data.

Keeping a cache of metrics allows for intelligent decision
making processes. Once a decision is made to switch modes to
remote procedures, periodic updates of this cache are required
to ensure network and process conditions are still warranting
this switch rather than a return to the original model.

V. EVALUATION

In this section we present performance micro-benchmarks
and measurements regarding automation of generating RPC
systems with ALRPC.

A. Experimental Setup

A need for a customised, application specific solution to
determine when to use local or remote function calls is
purely dependent on the network capabilities of each client
machine. A client machine requires access to the data and
the performance of this operation is solely dependent on the
client’s network capabilities [5]. Table I illustrates that even
for a 50MB file the GET times vary greatly dependent on the
network capabilities of the client and on spatial locality of the
data. In this paper we focus on a mechanism which enables

TABLE I
GET TIMES IN SECONDS FOR GEOGRAPHICALLY DISPERSED NODES
ACCESSING 50MB FILE ON AWS S3 ACCOUNT HOSTED ON US WEST

CoAST [5]
Site Min | Max | Mean | Median
UVic 17 532 53 26
Uw 3 110 15 12
UKY 45 76 48 47
Germany | 159 179 169 168
Brazil 213 613 344 294
Taiwan 224 230 226 226
France 161 4243 | 950 998
EC2 1.7 67 10 4.7

us to convert a monolithic application into a self-adaptive
distributed system. A primary criteria of this mechanism is
automation to far greater levels than competing RPC tools
for applications written in C. Our experiments target aspects

of ALRPC to determine its competitiveness in regard to
performance of the final system and the degree of automation
when converting the system.

In the Geospatial Data Abstraction Library (GDAL) we
find functions with signatures such as int GDALCheckVer-
sion (int nVersionMajor, int nVersionMinor, const char *
pszCallingComponentName), int CPL_DLL CPL_STDCALL
GDALInvGeoTransform(double *padfGeoTransformln, dou-
ble *padfinvGeoTransformOut) and int GDALWriteWorldFile
(const char *, const char * double *). Figure 3 shows mea-
surements comparing ALRPC implementations with RPCGen
implementations of the same system. Here functions fI, f2
and f3 represent a subset of real systems functions with which
ALRPC can currently deal with. Function fI has the signature
int fl(int x), f2 has int f2(int x, int y), and f3 represents char
* f3 (char * s) which can be mapped to GDAL functions.

Final System: ALRPC vs GPCGen

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

RPCGen f1 -

RPCGen f2 r

RPCGen f2 F

AP .
ALRPC 2 —I
P e v

] 1000 2000 3000 4000 5000 6000 7000 8000 9000

Hmin
W mean

RPC Systern and Function Mame

Timein microseconds

Fig. 3. Comparing ALRPC system and RPCGen system where server and
client are on different machines and network bandwidth is approximately
38Mbits/sec. Time shown in microseconds measuring call completion

The measurements represent call completion time of each
remote function call. Measurements were obtained over a net-
work with approximately 38Mbits/sec bandwidth (obtained via
iperf measurement). For relatively large data files (a few MB)
this system may not exhibit a need for remote procedure calls
at all. However, we propose a system which can dynamically
monitor and profile an application on a case by case basis.
The same experiment as in Figure 3 was performed when
connecting to the server via a mobile phone network. Here the
available bandwidth ranged between 150 and 170Kbits/second.
A profiler as we propose it can determine that data transfers of
even a few MB require significantly more time than executing
a remote function call. This is even true when using a mobile
phone network where the remote function call time for each
of the tested functions experienced a 100-300 times slowdown
compared to the measurements in Figure 3.

The system using ALRPC was built semi-automatically,
only requiring cut and paste edits to move function definitions
into a separate header file. Using the RPCGen tool required
code changes to the application as well as creating additional
description language files. While the RPCGen system shows
a performance benefit, the manual programmer involvement
was significantly larger. ALRPC required cut and paste type

changes to the existing code base with the additional effort
of including one header file in the source code. RPCGen on
the other hand required significant changes such as creating
files in a RPC description language. Additionally RPCGen
also required code changes to reflect automatically generated
function stubs, identifiers and parameter types. Lastly, for the
functions tested RPCGen forced us to use it in a mode which
is incompatible with some older auto-generated files.

B. Empirical Results

Automation is one of the main criteria to evaluate our
system. Existing RPC systems are considered to be heavy
weight and in need of a lot of manual programmer interaction
to produce a distributed system.

Table II presents the recorded metrics related to manual
programmer involvement. Manual programmer involvement
is directly related to one of the main goals of ALRPC:
automation of the process of generating a RPC system which
is a distributed C application that had been converted from
a monolithic application. Automating this process addresses
the number of lines of code changed, the complexity of these
changes, and the number of files which contain these changes.

TABLE 11
MANUAL CHANGE METRICS. FOR SIMPLE FUNCTION SIGNATURES AS
SHOWN ALRPC REQUIRES FEWER MANUAL CODE CHANGES AND
ADDITIONS THAN COMPETING RPC TOOLS

RPC Function Lines of | Manual automatically total

tool RPC de- | lines of | generated number

name scription Code files of files

Language changed

RPCGen | int fl(int) 5 4 3 6

RPCGen | int f2(int, 5 3 3 6
int)

RPCGen | char* 5 5 3 6
f3(char *)

ALRPC | int fl(int) 0 1 5 10

ALRPC | int f2(int, 0 1 5 10
int)

ALRPC | char* 0 1 5 10
f3(char *)

Even for simple test functions ALRPC requires far fewer
changes than the competitor RPCGen. Moreover the changes
for ALRPC are simple cut and paste operations of moving
prototype declarations and headers into new files. RPCGen
requires code changes due to automatically generated function
stubs which do not agree with the original code base. Unlike
RPCGen, ALRPC does not require additional description
language files either.

Analysis of Figure 3 shows that there is some slowdown
in the resulting system when using ALRPC compared to
an industry strength tool such as RPCGen. However this
slowdown is, dependant on the use case, acceptable for the
gain ALRPC provides in automating the code refactoring from
monolithic application to distributed RPC system.

VI. LIMITATIONS

Semantics of the target language C and the goal of automa-
tion produce several limitations for ALRPC. These limitations

affect the automation of generating a distributed application,
they do not impact the viability of our proposed approach.

First ALRPC can only deal with simple function signatures.
Simple refers to primitive data types, pointers of primitive
data types and structures. All cases are limited to one level
of pointer redirection only. Semantics of C are ambiguous
and make it impossible to obtain a unique data type in some
situations. To illustrate this complexity, consider the case of
char * s. Here,“s” is likely to be one of two types. First, “s”
could be a pointer to a null terminated string. Secondly, “s”
could also be a pointer to a location in memory of size char.
Even for simple cases like this, C semantics are ambiguous.

Despite these limitations we find that there is still a large
body of suitable functions. Table III shows an analysis of func-
tions in source code of different origins. The table separates the
return types and parameters. It shows the percentage for each
category with which ALRPC is able to deal with automatically.
ALRPC is able to deal with a large body of functions in real
world systems. Whether these functions should be converted
to remote calls is not answered by this table.

TABLE III
PERCENTAGE OF FUNCTIONS AND PARAMETERS WHICH ARE OF A TYPE
ALRPC COULD DEAL WITH

Shared Libs | Iceweasel | Firefox | wget
Acceptable Argument type | 72.2% 58.4% 74.1% 78.3%
Acceptable Return type 77.2% 87.0% 80.6% 71.2%

With ALRPC we can now develop self-adaptive systems
that monitor, profile and alter an application’s behaviour to
switch between local and remote functions. The motivations
for such a system are latency, large data files, legal restrictions
on the movement of data and security concerns. Such a system
can turn a monolithic application into a distributable system
with limited manual programmer involvement.

VII. CONCLUSION

We have shown a need for applications to dynamically
switch between local and remote function call implementa-
tions. We have made this argument on latency requirements.
Security concerns and legislative requirements regarding the
data’s location were not considered in this paper, but these
concerns can outweigh any consideration for technical benefits
as illustrated above. We have also shown that a dynamic
profiling capability needs to be implemented on a case by
case basis. Further, it is the capability of semi-automatically
converting monolithic applications into distributed systems
that makes these considerations feasible in the future. Through
ALRPC manual changes to the code base are fewer and
simpler than with competing tools such as RPCGen. ALRPC
is the mechanism that allows us to semi-automatically convert
existing monolithic applications into a distributable system.
Once this is achieved profiling of the application allows the
system to become truly self-adaptive based on application and
scenario specific metrics. ALRPC outperforms existing RPC
tools in this task due to its high degree of automation.

(1]
[2]
[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]
[14]
[15]
[16]

(17]

[18]
[19]

[20]

[21]
[22]

(23]

[24]

[25]

[26]

[27]

REFERENCES

RPCGen manual pages, 2012.

Amazon. AWS Pricing, 2012.

L. Baresi and L. Pasquale. Adaptive goals for self-adaptive service
compositions. In Web Services (ICWS), 2010 IEEE International
Conference on, pages 353-360. IEEE, 2010.

N. Bencomo, P. Sawyer, G. Blair, and P. Grace. Dynamically adaptive
systems are product lines too: Using model-driven techniques to capture
dynamic variability of adaptive systems. In 2nd International Workshop
on Dynamic Software Product Lines (DSPL 2008), Limerick, Ireland,
volume 38, page 40, 2008.

A. Bergen, Y. Coady, and R. McGeer. Client bandwidth: The forgotten
metric of online storage providers. In Communications, Computers and
Signal Processing (PacRim), 2011 IEEE Pacific Rim Conference on,
pages 543-548. IEEE, 2011.

A. Birrell and B. Nelson. Implementing remote procedure calls. ACM
Transactions on Computer Systems (TOCS), 2(1):39-59, 1984.

R. Brandle, D. Goodliffe, D. Keith, R. Robinette, R. Sizemore, G. Smith-
wick, and A. Zappavigna. Remote procedure calls in heterogeneous
systems, June 8 1993. US Patent 5,218,699.

V. Cardellini, E. Casalicchio, V. Grassi, F. Lo Presti, and R. Miran-
dola. Towards self-adaptation for dependable service-oriented systems.
Architecting Dependable Systems VI, pages 2448, 2009.

A. Chervenak, E. Deelman, C. Kesselman, B. Allcock, I. Foster, V. Nefe-
dova, J. Lee, A. Sim, A. Shoshani, B. Drach, et al. High-performance
remote access to climate simulation data: a challenge problem for data
grid technologies. Parallel Computing, 29(10):1335-1356, 2003.

A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and S. Tuecke. The
data grid: Towards an architecture for the distributed management and
analysis of large scientific datasets. Journal of network and computer
applications, 23(3):187-200, 2000.

B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti. Clonecloud:
elastic execution between mobile device and cloud. In Proceedings of
the sixth conference on Computer systems, pages 301-314, 2011.

F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and S. Weer-
awarana. Unraveling the web services web: an introduction to soap,
wsdl, and uddi. Internet Computing, IEEE, 6(2):86-93, 2002.

J. Dean and S. Ghemawat. Mapreduce: simplified data processing on
large clusters. Communications of the ACM, 51(1):107-113, 2008.

E. Di Nitto, C. Ghezzi, A. Metzger, M. Papazoglou, and K. Pohl.
A journey to highly dynamic, self-adaptive service-based applications.
Automated Software Engineering, 15(3):313-341, 2008.
genevaassociation.org. Risk management n 47 / may 2010, 2010.

A. Goldsmith, D. Goldsmith, and C. Pettus. Object-oriented remote
procedure call networking system, Feb. 13 1996. US Patent 5,491,800.
H. Gomaa and K. Hashimoto. Dynamic self-adaptation for distributed
service-oriented transactions. In Software Engineering for Adaptive and
Self-Managing Systems (SEAMS), 2012 ICSE Workshop on, pages 11—
20. IEEE, 2012.

IBM. Ibm internet security systems: Sunrpc, 2013.

E. McManus. Inter-process communication using different programming
languages, Oct. 28 2008. US Patent 7,444,619.

V. Paxson. End-to-end internet packet dynamics. In ACM SIGCOMM
Computer Communication Review, volume 27, pages 139-152. ACM,
1997.

L. Richardson and S. Ruby. RESTful web services. O’Reilly Media,
Incorporated, 2007.

R. Srinivasan. Rpc: Remote procedure call protocol specification version
2. 1995.

A. Tanenbaum and R. van Renesse. A critique of the remote procedure
call paradigm. Vrije Universiteit, Subfaculteit Wiskunde en Informatica,
1987.

S. van der Burg and E. Dolstra. A self-adaptive deployment framework
for service-oriented systems. In Software Engineering for Adaptive and
Self-Managing Systems, pages 208-217. ACM, 2011.

S. Vinoski. Rpc under fire. Internet Computing, IEEE, 9(5):93-95, 2005.
S. Vinoski. Rpc and rest: dilemma, disruption, and displacement.
Internet Computing, IEEE, 12(5):92-95, 2008.

T. White. Hadoop: The definitive guide. O’Reilly Media, 2012.

