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Abstract—Distributed systems require effective mechanisms
to manage the reliable provisioning of computational resources
from different and distributed providers. Moreover, the dy-
namic environment that affects the behaviour of such systems
and the complexity of these dynamics demand autonomous
capabilities to ensure the behaviour of distributed scheduling
platforms and to achieve business and user objectives. In
this paper we propose a self-adaptive distributed scheduling
platform composed of multiple agents implemented as intelli-
gent feedback control loops to support policy-based scheduling
and expose self-healing capabilities. Our platform leverages
distributed scheduling processes by (i) allowing each provider
to maintain its own internal scheduling process, and (ii)
implementing self-healing capabilities based on agent module
recovery. Simulated tests are performed to determine the
optimal number of agents to be used in the negotiation phase
without affecting the scheduling cost function. Test results on
a real-life platform are presented to evaluate recovery times
and optimize platform parameters.

Keywords-self-healing; scheduling platform; distributed sys-
tems;

I. INTRODUCTION
With the continuous evolution from software intensive

systems to socio-technical ecosystems, users and businesses
are demanding the provisioning of distributed resources from
different and independent infrastructure providers (IP) (e.g.,
Cloud, Grid or Cluster) in a reliable way, despite the un-
certain, heterogeneous, transient and volatile environmental
conditions that can affect the behaviour of these systems [1].
Thus, socio-technical ecosystems require effective mecha-
nisms to manage the provisioning of resources while releas-
ing the user from having to manually orchestrate providers to
achieve system objectives. Regardless whether infrastructure
providers are called Grid-based Virtual Organizations or
now Cloud providers, their objective is to offer reliable,
secure and efficient computational resources ensuring that
the underlying systems are fault tolerant by exposing self-
healing capabilities under dynamic environmental conditions
[2]. Moreover, providers need to maintain their autonomy
by keeping their own scheduling, security and negotiation
policies. Therefore, under these complex dynamics, self-
healing and autonomous behaviour are essential in any
multi-provider Resource Management System (RMS).

Most current solutions for RMS have been developed
for cluster or intra-provider usage where access policies
are subject to the local authority decisions [3]–[6]. How-
ever, when considering inter-provider environments, these
solutions need be adapted to facilitate task migration under
certain access and sharing rules. Autonomy can be imple-
mented using Multi Agent Systems (MAS). They rely on
autonomous entities called agents to interact and to make
decisions based on internal logic [7]. MAS offer a natural
extension to RMS as they allow multi-providers to inter-
operate through negotiation [8], [9]. The foundations of
multi-site MAS scheduling are briefly presented by Sauer et
al. [10]. They present the problem as a hierarchical two-level
structure that reflects the typical layout found in inter-site
systems. The upper level consists of the global scheduler
responsible for coordinating the lower level comprised of
local schedulers working on individual locations.
As shown in Sect. II, several approaches have been

proposed to create MAS for task scheduling. However, most
approaches focus on individual aspects such as negotia-
tion, SLA management, scheduling or self-healing. Provid-
ing a completely distributed, self-healing and customizable
scheduling solution for inter-provider usage is a challenge
from both technical and scientific points of view. Technical
issues arise due to compatibility problems when binding
together various software for distributed storage or commu-
nication. Another reason could be that current solutions are
still at an early stage of development and do not yet meet
the required expectations. From a scientific perspective we
require a model which allows us to represent the system
components as autonomous, self-healing, fully customizable
entities. Section II also outlines some work in the area of
self-healing MAS for RMS. However results are scarce and
do not offer complete self-healing and autonomous solutions
to the problem.
To face the challenge of building an autonomous self-

healing RMS platform, we tackle both technical and sci-
entific aspects and propose an adaptive inter-provider MAS
scheduling platform able to (i) offer fully distributed storage
and communication mechanisms; (ii) self-heal to support
fault-tolerance by means of implementing agents as re-
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coverable modules of feedback control loops; (iii) support
autonomy among providers by separating the dynamically
changing scheduling policy from the application by means
of an inference engine; and (iv) adapt/change the negotiation
policy by implementing negotiators as plugable modules. To
minimize the impact of rescheduling tasks on the system, we
reduce the number of agents needed during the negotiation
phase without affecting the scheduling objective function.
Moreover, we validate our approach by testing the time
needed to heal the platform after module failures. Finally,
we performe a study on finding the optimal set-up platform
parameters that would not produce false healing events.
The remainder of this paper is organized as follows.

Section II discusses related work on MAS for task schedul-
ing. Section III gives an overview of the proposed RMS
by presenting the platform model. The main modules are
presented in Sect. III-A. Details on the distributed solutions
for managed resources and touch-points are shown in Sect.
III-B. The two types of agents, for scheduling and for self-
healing are presented in Sects. III-C and III-D. Insight on
the platform is given from a self-healing perspective with
details on how the control loops are implemented inside
agents. Section IV presents how we optimize the number
of agents involved during the negotiation phase to minimize
the impact of scheduling tasks on the system. Section V
presents empirical tests on platform recovery times, as well
as a method for determining the optimal parameters for the
platform setup. Section VI outlines the main conclusions of
the paper.

II. RELATED WORK

Well knownMAS for RMS include Nimrod/G, which uses
agents for handling the setup of the running environment,
transporting the task to the site, executing it and returning
the result to the client [11]; TRACE, which dynamically allo-
cates resources and agents based on the demand [12]; ARMS
[13], which uses PACE [14] for application performance
predictions; and AppLeS (Application-Level Scheduling)
that also implements adaptive capabilities [15].
Tang and Zang proposed a service-oriented peer-to-peer

MAS [16]. However, their system relies on a simplis-
tic scheduling mechanism and does not implement self-
adaptation. The MAS proposed by Amoon et al. uses a
single fixed scheduling agent responsible for planning tasks
on resources [17]. Tasks are then moved to and from these
resources by using mobile agents. While the approach offers
an advantage by using mobile agents for migrating and
executing tasks, its main drawback is the use of a single
static scheduling agent. This compromises the robustness of
the system by introducing a bottleneck as well as a single
point of failure for the entire scheduling mechanism. Cao
et al. proposed a load balancing method for MAS aimed
at Grids [18]. Although their system implements scheduling
algorithms based on artificial intelligence (AI) techniques,

it lacks support both for overcoming security issues when
multiple providers are used and for a customizable nego-
tiation module. The approach proposed by Ouelhad et al.
focuses on Service Level Agreement (SLA) protocols for
MAS and presents a protocol for negotiation as well as for
renegotiation in the presence of uncertainty [9]. The SLA
is designed following the two level inter-site approach [10]
and thus could be easily adapted to multi-provider scenarios.
Shen et al. [8] present a negotiation protocol based on
a case-based learning and reasoning mechanism. The four
negotiation models included in the experiments involve the
Contract Net Protocol, the Auction Model, the Game Theory
Based Model and Discrete Optimal Control Model. This
work could be used as a starting point for building adaptive
negotiation agents, but it lacks the experiments for validating
the benefits of such an approach.
Self-healing mechanisms can be implemented with feed-

back control loops [19]. When applied to MAS, feedback
control loops allow agents to recover from expected failures
(e.g., scheduling and security policy modifications) and more
importantly from unexpected ones (e.g., network or resource
failures, agent availability). Page et al. proposed a distributed
self-adaptive and failure tolerant system based on an n-ary
tree [20]. Each tree node represents a scheduler while leaves
stand for processing nodes. However, the system has the
following problems: it lacks a negotiation protocol between
schedulers, communication is not truly decentralized as
scheduling nodes can only communicate with their parents
or children, and adaptivity is restricted to reassigning tasks
to parent schedulers in case a scheduling node fails.

III. PLATFORM OVERVIEW
An MAS intended for task scheduling usually consists of

several intelligent agents working together toward efficient
task scheduling. Intelligent agents differ from regular agents
by supporting the following three important characteristics
[10]: reactivity—enables agents with capabilities to react to
events from the environment; pro-activeness—allows agents
to take initiatives driven by goals; and social ability—
enables agents to interact with other agents.
In this paper we propose a self-adaptive distributed

scheduling platform composed of intelligent agents en-
hanced with custom modules (cf. Fig. 1). Agents are de-
fined as intelligent control loops composed of one or more
modules. Every control loop supports scheduling activities
by implementing the foundational steps performed by an au-
tonomic MAPE (Monitor-Analyse-Plan-Execute) loop [21].
As depicted in Fig. 1, modules that define an agent corre-
spond to the monitor, analyser, planner and executor. Anal-
ysis and planning activities are performed by the negotiator
and the scheduler modules. Thus, an intelligent feedback
loop supports not only scheduling but also re-scheduling
activities. Environment data received through the monitor
module is analysed by the negotiator and the scheduler
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Figure 1. Self-adaptive MAS scheduling platform: high level architecture.
Agents are implemented as intelligent feedback contriol loop composed of
one or more modules.

modules that act accordingly to scheduling plans. Tasks are
allocated among available resources by the executor module.
The monitoring of resources and tasks related conditions
feeds the system back to ensure the rescheduling process.
Finally, a self-healing module built on top of the MAS
enables the infrastructure with self-healing capabilities that
allow module recovery. Agent distribution across multi-
ple providers is supported by communication mechanisms
implemented by the message queue system. This queue
system not only enables the communication among agents
and modules but also acts as the sensors and effectors
required to support self-healing capabilities. As proposed in
the Autonomic Computing Reference Architecture (ACRA)
[22], the queue system implements a level of indirection
that supports the gathering of contextual events related to
the scheduling infrastructure behaviour and the execution
of module recovery tasks. Depending on the case and to
increase failure tolerance, agents can be made up of single
modules spread across the system. Following the modular
approach an agent can comprise all the system functionality
(self-healing, negotiating and scheduling/executing tasks) or
be a specialized agent (e.g., only for task scheduling).
The proposed MAS scheduling platform allows each

provider to keep its own internal scheduling policies. Agents
can also use their own scheduling policies at the meta-
scheduling level. Hence, each agent is autonomous in de-
ciding when to request/send tasks from/to partner agents.

A. Agent Modules
Agent modules are designed as autonomous entities that

continue working even when the connection with their
partners has been severed. To increase the platform’s fault
tolerance, we propose an approach where agents are imple-
mented as intelligent control loops composed of several dis-

tributed modules that inter-communicate using asynchronous
message queues. These control loops enable the scheduling
infrastructure to self-adapt to both changes in the platform
characteristics and to module failures.
Based on these feedback control loops we classify agents

as either scheduling or self-healing. Both types are defined
as a set of modules that implement the intelligent feedback
loops’ phases (cf. Sects. III-C and III-D).
The distributed and autonomous approach allows agents

to spread across several resource nodes and to continue
functioning when some of their modules fail. Moreover,
by being modular every provider can create custom agents
tailored to its own requirements.

B. Managed Resources and Touch-points
Managed resources help the platform store and handle rel-

evant data including task, resource and module information.
Managed resources include storage, databases and execution
resources (cf. Fig. 1). A special case is represented by the
resource queues (i.e., dotted box in Fig. 1) which are not
actual resources but are strongly linked to the execution
resources as they provide the order in which tasks execute. In
the proposed MAS they are implemented as simple ordered
lists that can be accessed directly by means of a service.
Choosing a correct storage environment is essential to any

distributed system as data needs to be stored in a reliable
manner. As a distributed system can be quite volatile in
terms of node availability and network traffic, we have opted
for a distributed file system where failures of single nodes
do not affect the overall system behaviour. The Hadoop
Distributed File System (HDFS) is a suitable choice as it
offers fault tolerance, scalability up to several thousands
nodes, allows data re-balancing on cluster nodes and can take
into consideration the physical location of the node when
allocating storage [23]. HDFS was initially developed for
clusters. However it can be expanded to inter-cluster usage
as long as the same trust policies exist between peers. In
a multi-provider environment this is somewhat difficult to
implement as partners usually want to keep their internal
policies. To address this problem, we have used an FTP
server that works over HDFS and allows agents to connect
to any remote HDFS.
For storing information related to task to resource map-

pings and task ordering in resource queues, the MAS also
relies on a key-value access mode distributed database
system called HBase [24]. This database is primarily used
by the scheduler, the executor and the monitor modules.
Execution resources represent resources on which agent

modules run or where tasks execute. Usually resources are
represented but not restricted to single machines. The choice
of the actual task deployment platform is left to the IP.
Platform touch-points represent the means of binding

the agents modules to the managed resources (cf. dotted
arrows in Fig. 1). Usually they are specific to the software
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solution used for implementing the managed resource. For
instance, the touch-point between HDFS and the MAS is
achieved through FTP, the touch-point between HBase and
the MAS is achieved with the HBase query language. A
distinct case of touch-points is represented by the inter-
module communication.
Communication is essential in any distributed system

and facilitates the dialogue between the system’s compo-
nents. Because communication needs to be resilient when
faced with failures, and to provide asynchronous read/write
functionality, standard solutions such as HTTP, RMI or
SOAP are improper. Distributed Message Queuing Systems
seem to provide a viable solution. Our implementation uses
RabbitMQ [25] which implements the AMQP (Advanced
Message Queuing Protocol) standard [26]. RabbitMQ has
the advantage of not requiring to know a priori the number
of registered exchanges (stateless routing tables). This built-
in feature is especially useful when issuing negotiation
bids, checking the availability of existing modules or when
attempting to activate modules. It also acts as the de facto
Yellow Page directory where all agents are published. The
procedure only requires the agent modules to bind to an
exchanged and implement the corresponding listeners.
As RabbitMQ exchanges are persistent, any unprocessed

message is safely stored when failures—either in the com-
munication infrastructure or in the modules themselves—
occur.
Data is sent across communication partners using

JavaScript Object Notation [27]. It consists of four main
elements: sender ID, recipient ID, message content and
message type. This email-like message format represents the
de facto SLA used by the platform and allows for modules to
easily recognize whether the message is intended for them
and where it originated. Any messages not conforming to
this format are automatically ignored.

C. Scheduling Agents
Each scheduling agent implements a scheduling feedback

loop composed of at least one monitor, one negotiator,
one scheduler, and one executor module (cf. Fig. 2). To
accomplish their business objectives, the scheduling sys-
tems must be able to adjust their behaviour according to
environmental conditions that affect the state of compu-
tational resources. Feedback-loops are important models
in the engineering of adaptive scheduling systems. They
define how the interactions among agent modules ensure
successful task scheduling according to SLAs and desired
properties. Moreover, context information that characterizes
the situation of resources and tasks must be monitored to
control the rescheduling process. The following subsections
detail the modules that compose every scheduling agent.
1) The Monitor Module: From a dynamic scheduling

perspective, context can be defined as any information
that characterizes the state of entities that can affect the

Figure 2. The feedback loop for the task rescheduling process

behaviour of computational resources and tasks. The context
information must be modelled so that it can be discovered,
pre-processed after its acquisition from the environment, and
handled to be provisioned based on the system’s require-
ments [2]. Instances of context entities relevant for RMS
are services, processing nodes and SLAs.
Monitor modules in scheduling agents are responsible

for gathering information regarding the current situation
of tasks and computational resources. Context acquisitors
deployed as context probes gather at given events or time
intervals information related to resource load, system het-
erogeneity, task size in terms of megabytes; task execution
requirements such as required processing power in flops
for a particular system state; and task failures from logs.
Monitoring actions are triggered by task arrivals/completion
or changes in resource availability. Whenever a new task
is ready to be scheduled, the monitor gathers the relevant
information of the task and then sends this information to the
negotiator module that acts as the analyser in the scheduling
feedback loop. Monitored information about task failures
includes data on wrong input files, invalid dependencies
and resource failures. Resource availability is periodically
monitored within each IP’s domain by sending ping signals
to the task executor module.
2) The Negotiator Module: It is part of the analyser in

the scheduling feedback loop. The negotiation process starts
with the selection of the desired policy to guide the intra-
scheduling process. The selection is based on a best cost
provider approach where every available policy is evaluated
in the light of the current system’s configuration. Once the
policy that provides the best solution is selected, a message
is sent to the targeted scheduler requesting the loading of
the corresponding rule-base definition to apply the policy.
The negotiator module’s main purpose is inter-provider

task relocation. Relocation usually follows a scheduling pol-
icy that extends/complements the possibly different heuris-

228



tics at the intra-provider level. To minimize the number
of messages the negotiator uses the dynamic scheduling
algorithm for heterogeneous environments with regular task
input proposed by Frı̂ncu [28]. This policy only relocates
tasks that have exceeded a certain waiting threshold on the
local agent’s resources. The reason for trying to minimize
the number of task relocation is a direct consequence of the
results provided by Tumer [29]. Tumer demonstrated that
an MAS obtains best scheduling results when the agents’
impact on the system is minimized. We argue that in our
system this goal is achieved when both the number of bid
requests and the number of scheduling agents involved in
the negotiation is reduced. The former can be adjusted by
tuning the rate of bid requests inside the scheduling policy
as proposed by Frı̂ncu [28], while the latter can be adjusted
by reducing the number of agents involved in the negotiation
phase as explained in Sect. IV.
The current negotiation policy is comprised of a one

step action based negotiation phase [8]. Task relocation
commences when the task exceeds a certain waiting time
threshold on the currently assigned resource queue. The
agent overseeing the task requests costs bids from all partner
agents by broadcasting a message containing information
related to the task at hand. The broadcast is received by all
scheduling modules including the initiator of the request.
Each module adds the task to its list, marks it as tem-

porary, executes the scheduling algorithm and assigns it
to a resource queue. The estimate is then sent back to
the negotiating module that handles the bid request. The
negotiator waits within a predefined time interval for bid
responses. Once this interval has expired the negotiator
selects the agent module that provided the best bid (e.g.,
smallest estimated execution time) as the winner. The final
scheduling decision is achieved by broadcasting the ID of
the winner module to all registered scheduling modules. All
agent modules that do not match the winner’s ID will erase
the temporary task from the list. This policy can be changed
based on the needs of every provider by creating a custom
negotiation module. In this way each organization can create
and run its own policies for accepting/issuing bids.
To minimize transfer costs during negotiation only task

meta-data is sent between agent modules. The data itself
(the concrete task) is sent only when the executor module
submits the task for execution.
3) Scheduling module: Scheduling modules are part of

the analyser in the scheduling feedback loop and are in
charge of the actual task to resource mapping. To maintain
autonomy each provider is able to choose its own internal
scheduling policy. Based on the policy, this module can
decide on whether to relocate/accept tasks to/from other
agents or to reschedule them on one of its resource queues.
The scheduling module operates at the meta level. Once a
task is submitted to a resource for execution, the scheduling
module relinquishes any control over it and the scheduling

proceeds according to the rules of the internal schedulers
(e.g., Condor, Legion, or NetSolve).
A scheduling module is usually attached to one or more

resources (e.g., that form a cluster) belonging to a single
provider. Modules can even share the same resources for
faster processing as proposed by Frı̂ncu [30]. Rescheduling
is accomplished periodically either at a given interval or
when tasks get completed.
To facilitate the management and the separation of the

scheduling policy from the scheduler itself, the algorithms
are implemented as event-condition-action rules described
using the SiLK formalism and executed using OSyRIS
[31]. The rules can be easily loaded and unloaded from
the rule base without restarting the module. Rule bases
are usually changed when one of the following occurs:
failures of the inference engine; changes in the scheduling
policy as dictated by the organization; or adaptations to the
new platform characteristics. Once the rule base has been
loaded, the OSyRIS engine executes all the rules that have
their conditions matched in the working memory. This is
updated automatically after every successful rule execution.
The cycle continues until either an error occurs or a special
rule that makes the system idle is triggered. In either case
the working memory is cleared and the cycle is restarted.
When executing rules, remote service invocations are made
for specific methods that provide information related to
resources and tasks. The information is taken from the
distributed database (cf. Sect. III-B). The methods only
offer access to atomic information [30]. In this way the
building blocks for compound operations for a large range
of scheduling heuristics are provided.
Rescheduling task issues (i.e., failures and optimization)

are usually solved by reassigning tasks on a different re-
source. Task rescheduling is mandatory in any distributed
system because of both the volatile nature of resource
nodes and the on-line task arrival rate that needs to be
considered. Therefore, the system needs to adapt to changes
in resource availability and load rates as these two context
facts influence the cost function directly.
Special cases are represented by already running tasks

that failed to finish before the estimated execution time and
by resources that have gone offline during task execution.
In both cases the tasks are considered to be aborted and
the scheduler will attempt to reschedule them. Due to the
difficulty of distinguishing dead resources from overloaded
ones it is likely to end up with several instances of the same
task running in parallel. In this case we followed an approach
where only the first received result is considered valid.
4) The Executor Module: The purpose of the executor

module is to take tasks from resource queues populated
by the planner (i.e., scheduler module) and to start their
execution. When the resources are exposed as services, the
module’s role is to submit the tasks’ execution via the
service’s interface. Before execution, the task data, including
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executable/jar archive and dependencies, is grabbed from
HDFS and copied to the resource.
To determine the set of tasks to be executed, the executor

accesses the resource queue, determines the first n tasks
ordered by execution number, and starts the tasks transfer.
Once the archive is copied to the corresponding resource,

the executor extracts it and starts the execution. It is up
to the provider to specify a means for executing the tasks.
The executor is custom tailored to fit the provider and acts
only as a liaison between the actual deployment platform
and the MAS. As soon as the execution is completed, the
results are archived and sent back to the HDFS. A completed
execution does not necessarily mean a successful one. The
concrete status can be queried by the monitor module from
the execution logs to trigger a rescheduling process in case
the execution has failed.

D. Self-Healing Agents
Self-healing agents, built on top of our MAS schedul-

ing platform, enable the infrastructure with an intelligent
feedback loop that supports module recovery capabilities.
Self-healing agents are designed similar to the multi-agent
feedback loop that is part of the autonomic system proposed
by Caprarescu and Petcu [32]. Module failures represent
failures in the execution of any of the MAS’s modules.
As depicted in Fig. 3, the monitor module is responsible

for gathering information about the status of modules. Gath-
ering mechanisms are either supported actively by sending
requests and/or pings, or passively by receiving messages
from the monitored modules. Context sources are repre-
sented by the distributed database and message queues. The
first one provides information for determining the load of the
system and the topology configuration, while the second one
offers data related to the existing modules. The monitored
information is then sent to the analyser that determines the
current state of the monitored modules.
Each time a module becomes active it sends a registration

message to the monitor modules of the self-healing agents
that belong to the same provider. Every module periodically
notifies through messages its availability. By using the
monitored information, the analyser checks whether or not
any of the registered modules has timed out.
Once a time out has been reached, the analyser sends the

relevant details about the failure to the planner. The planner
then searches for an inactive clone module (i.e., registered
idle module) that can be used to replace the failed one. Clone
modules receive messages from the environment and send
notification pings but do not execute their logic.
After a clone has been identified the planner sends the de-

tails to the executor to activate it. In the case where no such
clone exists, the system sends a multicast message searching
for resources willing to deploy on demand a module. If
such a resource is found, its endpoint identification (e.g., IP
address) is sent to the executor in charge of transferring the
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Figure 3. The feedback loop for the module recovery process that
implements self-healing capabilities.

proper module data and starting it. Newly deployed agents
resemble mobile agents [17].
To avoid the redundancy of running several identical

modules, every module ready to activate sends a broad-
cast message searching for one performing identical tasks.
Depending on the broadcast outcome the module either
activates or becomes idle.
Self-healing modules are also able to recover themselves

from failures. The module recovery feedback loop imple-
ments several healing modules dealing with the MAS. As
all modules are registered during their activation, healing
modules are also monitored by partner modules and are
subject to the same recovery mechanisms. A special category
of failures consists of infrastructure failures. These are fail-
ures of components that cannot be handled explicitly by the
self-healing mechanisms implemented on top of the MAS
scheduling platform. They include most of the problems
that arise from infrastructure related issues. In this paper
the infrastructure is seen as the bundle of existing physical
resources, network fabric, communication system, database
storage and file system.
Our MAS can be viewed as a tree with the negotiator at

the root, the providers’ schedulers at the second level and
the executors as leafs. Failures at any level allow the sys-
tem to continue functioning partially even without recovery
mechanisms. Without a negotiator, the providers’ schedulers
continue scheduling tasks without inter-provider migration;
without schedulers, the executors continue executing tasks
in the order provided by the last schedule; without some of
the executors, the scheduler reschedules tasks to resources
still having executors attached to them. Other combination
of failures lead to similar results. Errors in the HBase and the
HDFS are dealt automatically by the systems themselves as
they replicate data on several nodes for better fault tolerance.
Self-healing modules that have been isolated from the

platform continue monitoring and healing reachable agent
modules. Therefore, isolated islands of modules can continue
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to function even when separated from the platform.

IV. REDUCING THE NUMBER OF AGENTS USED IN THE
NEGOTIATION PHASE

Reducing the number of involved scheduling agents min-
imizes the impact of the rescheduling tasks on the system
[29]. However the reduction needs not to negatively influ-
ence the overall schedule cost function, which in this paper
is set to makespan—time needed to complete the existing
tasks. Selecting a proper agent subset from a suitable parti-
tion set is an essential step. In this paper we propose and test
a partition method based on the fuzzy C-Mean algorithm for
clustering agents [33]. Based on these partitions we select
rescheduling candidates from the agents that match best
the task requirements. We opted for this solution because
clustering algorithms allow data to be partitioned based on
similarities found in it.
In our tests we used the following similarity parameters

when creating the clusters: acceptTasks, which specifies
whether the agent module accepts (1) or not (0) tasks;
offerTasks, which specifies whether or not the agent module
offers (1) or not tasks (0); noTasks, which represents a
normalized value of the number of tasks handled by this
module at a given moment in time; and a list in which
an element operationi indicates whether the agent module
supports (1) or not (0) the respective operation for i = 1, n.
Here n indicates the total number of operations supported
by the platform and is used mostly when tasks are submitted
for execution through a service interface that supports a
restricted number of operations.
When trying to find a suitable cluster for a specific task

its similarity parameters are set as follows: acceptTasks=1,
offerTasks=0.5, noTasks=0, and operationi = 1 for all
operations required by the task.
Tests on the clustering algorithm used a fuzziness value

of 1.25 and an algorithm stopping condition with a value
of 10−10. The number of agents was set to 100 and tests
were repeated 20 times. The number of clusters increased
with each test from one to 10 clusters and the pair (mean
makespan, standard makespan deviation) was retained after
each test. For each scheduling module a number of 250
tasks were generated. Each task had an estimated execution
time (EET) following a Pareto distribution with a minimum
EET value of 1,000ms and a shape parameter of 2. Task
size was generated with a Pareto shape parameter of 1.3.
This provided 25,000 tasks to be scheduled for the entire
platform. Task arrival rate was modelled by using a 8 degree
polynomial extrapolation [34]. The Grid’5000 network was
used as topology for the tests [35]. At the meta level the
DMECT algorithm proposed by Frı̂ncu [28] was used while
at provider level a FIFO policy was in place.
Figure 4 shows the main results of our tests. It shows the

makespan evolution when clustering is used. The plot shows
the mean makespan obtained from the DMECT heuristics,
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Figure 4. The influence of the number of clusters over the makespan
produced by DMECT. The results suggest that the negotiator should use
two clusters during the scheduling modules selection phase.

the standard deviation of the makespan (cf. grey polygon in
Fig. 4) and the minimum and maximum values obtained
in the tests. Tests reveal that the makespan obtained by
applying the chosen clustering technique does not differ
significantly for the 2 cluster case (-5%) while a maximum
mean degradation (relative to the best case) is observed for 4
(+47%) respectively 10 (+44%) clusters. From these results
we can infer that the safest way of reducing the number
of involved schedulers without negatively influencing the
makespan is to allow the negotiator to use 2 clusters during
the scheduling modules selection phase.

V. TESTING SCENARIO AND RESULTS

Stability and short healing times are important properties
in our scheduling platform. On one hand, false healing
events increase instability. On the other hand, short healing
times are important for the platform’s faster convergence
to its stable state. Thus, our tests were aimed at deter-
mining the time needed to heal the platform after agent
failures, and at finding the optimal platform parameters that
would not produce false healing events. False healing events
usually happen when a running module’s ping is not read
inside the timeout interval. Consequently the module can
be wrongly paused and another restarted. To test our MAS,
we used a real life platform comprised of 12 distributed
virtual machines (VM). The testing platform is based on the
infrastructure services provided by the Cloud-related project
mOSAIC [36]. The scenario used 12 agents represented by
2 healers, 1 negotiator, 2 schedulers and 8 executors.

A. Optimal Parameters Tests
Finding optimal parameters for the platform is crucial for

ensuring its behaviour. This means not only that the platform
should self-heal in the smallest amount of time but also not
to provide false self-healing events due to a poor setting of
the time-out between two consecutive module pings (pingi)
(interval in which a module i is considered active), module
idle times (miti), message receive time-out (msgtimeout)

231



or batch size for the number of messages read (msgbatch)
during one healing iteration.
To avoid false healing events we need to properly adjust

the reading rate to the provided parameters. For this we
need to identify the length of every read beat (the time
between two message reads). As events in the proposed
platform can be mapped to a discrete time space, we can
deduce the following relationship between two time intervals
Δt = hit+msgbatch·msgtimeout+τH , where hit represents
the healing’s module idle time and τH represents the time
taken by module operations distinct from message reads.
After every Δt we are left with a number of unread

messages equal with msgunreadk+1
= max(msgunreadk

−
msgbatch +

∑n

i
Δt/miti, 0), where the sum provides the

number of messages sent by module i during Δt.
In order to maintain msgunreadk

= 0 we need to have
msgbatch =

∑n

i
Δt/miti. Because of the high number of

variables involved in computing Δt we need to simplify
the equation in order to solve it easily. Generally we need
to ensure that there will be always at least one ping from
every module read during each interval. The condition
for obtaining this is: ∀msgk | arrival time msgk ∈
[last ping time, next ping time] ⇒

⋂
sender msgk =

n (safe read condition). To avoid violating it we need to
find the minimal functioning configuration for the simplest
case (i.e., all module send pings at the same moment) and
to increase the ping until a sufficient value is reached.
For testing we used a variation of the previously listed

parameters as follows: miti = 1, 500ms, msgbatch = 1, 20,
msgtimeout = 1 s and pingi ∈ {i | i = 1, 10}s. Figures 5
and 6 show some of the results achieved during testing. The
plots represent the average result obtained after 10 tests on
each configuration. Results have shown that configurations
that use a minimal pingi timeout of 0.9s have a low chance
of providing false module healing events. The reason for this
can be the fact that too small ping intervals cannot deal with
cases when the safe read condition is not met. This is highly
probable as modules are usually set with different idle times
and started at different moments in time. The batch interval
is maximized when hit and miti have both the smallest
possible values (cf. Fig. 5). As shown by the results depicted
in Figs. 5 and 6 the different module starting times become
irrelevant for cases when the pingi timeout and the batch
size become large enough as the healing module has enough
time to process messages from all modules during a timeout.

B. Recovery Time Tests
Recovery time of the platform after a partial or total fail-

ure of the involved modules is crucial to its efficiency. Based
on the tests from Sect. V-A the following optimal setup
parameters have been used during experiments: hit = 1ms,
miti = 1ms, msgbatch = 20, msgtimeout = 1ms and
ping = 20s. Two scenarios were of interest. The first one
involved one healing agent and only on demand deployment
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Figure 5. False recovery events related with the ping interval size for
hit = 1, miti = 1, msgtimeout = 1
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Figure 7. Recovery time vs. number of failed modules in the platform

while the second one assumed one healing agent and only
idle clones. Tests results are depicted in Fig. 7. As it
can be noticed when using idle clones the recovery times
are significantly improved as their are no other operations
besides sending activation messages to the clones.
The average time to recover a module depends on its type.

Executor and negotiator modules require an average of 4.2s
and 3.6s while schedulers need around 15.3s to fully start.
This difference is induced by the fact that schedulers also
require to initialize the rule engine and load the rule base in
memory before starting an operation that takes around 12s
in the case of the DMECT algorithm. A complete step in a
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healer’s loop takes around 1.7s from which 75.29% takes to
process the messages, 1.17% is for sleeping and the rest of
23.54% is for executing other module logic. When starting
remote modules an iteration can increase by up to 3.3 times
due to transfer times. Tests also confirmed a dependency
between the number of modules to be recovered and their
recovery time. Given the long term running of the RMS
a recovery time of around 60s for 10 modules using on
demand deployment is considered to be reasonable. This
recovery time can be diminished by attaching a healing
module to every group of at most 10 modules.

VI. CONCLUSION
In this paper we proposed a multi agent system for

inter-provider task scheduling enhanced with self-healing
capabilities. To achieve the goal of providing a distributed,
self-healing scheduling platform several issues needed to be
addressed as follows: (i) to provide fully distributed storage
and communication mechanisms, we used distributed under-
lying platforms; (ii) as agents are required to be fault-tolerant
and self adaptive, we implemented agents as modular in-
telligent control loops; (iii) to maintain the independence
among multiple providers and easily switch scheduling
policies, policy execution is based on an inference engine;
and (iv) to support flexibility in changing the negotiation
policy according to particular needs, we implemented a
negotiator as a plug-in-able module. Simulated tests were
run to minimize, without reducing the makespan, the number
of agents involved in inter-provider scheduling. Finally, we
tested our RMS on a real life environment in order to observe
its healing capabilities. Tests have shown that the platform
recovery times are inside reasonable limits. Future work
includes integrating and testing the platform on the future
cloud API provided by the mOSAIC project.
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