
SECURITY FUNCTION VIRTUALIZATION IN SOFTWARE DEFINED INFRASTRUCTURE

Pouya Yasrebi, Sina Monfared, Hadi Bannazadeh, Alberto Leon-Garcia

Department of Electrical and Computer Engineering
University of Toronto, Toronto, ON, Canada M5S 3G4

Emails: {pouya.yasrebi,sina.monfared,hadi.bannazadeh,alberto.leongarcia }@utoronto.ca

ABSTRACT
In this paper we present an approach to implement se-
curity as a Virtualized Network Function (VNF) that is
implemented within a Software-Defined Infrastructure (SDI).
We present a scalable, flexible, and seamless design for a
Deep Packet Inspection (DPI) system for network intrusion
detection and prevention. We discuss how our design intro-
duces significant reductions in both capital and operational
expenses (CAPEX and OPEX). As proof of concept, we
describe an implementation for a modular security solution
that uses the SAVI SDI testbed to first detect and then
block an attack or to re-direct it to a honey-pot for further
analysis. We discuss our testing methodology and provide
measurement results for the test cases where an application
faces various security attacks.

I. INTRODUCTION
Conventional network security systems consist of propri-

etary hardware boxes, usually including Application Specific
Integrated Circuits (ASIC) to perform Deep Packet Inspec-
tion (DPI). These devices are able to detect malicious traffic,
and prevent it from passing by blocking it. However, as
hardware implementations, they provide limited flexibility to
be customized based on specific customer needs. At the same
time, these systems are costly and not easily deployed in a
cloud. Their installation involves all the tasks associated with
physical installation of a hardware system. In most cases, the
operation of such security devices may not be downsized
when traffic drops and consequently the equipment goes
underutilized. In addition capacity upgrades require an addi-
tional installation with the associated disruption in network
operations.
In contrast to hardware systems, a software-based approach
based on commodity and/or sharable hardware can provide
capex savings as well as scalability, flexibility, and customiz-
ability. In this paper, we present an approach to provide
security services in software that can be run on Virtual
Machines (VMs). The approach takes advantage of Software
Defined Infrastructure (SDI) to enhance the security service
provided by the network.

II. SAVI AND SDI
Smart Applications on Virtual Infrastructure (SAVI) is a

project that is an outcome of industry and academia partner-
ship in Canada. The core idea of SAVI is to combine Cloud-
computing and Software Defined networking that is managed

by an integrated SDI Resource Management System (RMS).
SAVI [1] provides Infrastructure as a Service (Iaas) as well
as Network as a Service (NaaS), since it provides all the
services provided in each of these.
Network Function Virtualization (NFV) is a network archi-
tecture model for virtualizing network services. Network
functions that were previously executed in hardware are now
performed using commodity computing resources.
Many cloud computing management systems, such as Open-
Stack, do not provide a dedicated security system. Exam-
ples for SDN security projects include FortNOX[2], Cloud
Police[3], Flowvisor[4], and FRESCO[5]. In this paper we
consider providing security using NFV on SDI and hence
leveraging cloud computing and SDN.

II-A. Central SDI manager
In this section we review SAVI SDI RMS and its compo-

nents. The aim is to introduce the SAVI SDI to provide the
reader with an understanding of the functionalities used in
the security VNF.
As in [6] and [1] the SDI Manager, code-named Janus con-
sists of a number of modules and a module manager. These
include a scheduling module, networking control module and
fault tolerant module. The module manager will overlook all
modules. Janus, which encompasses the modules and module
manager, is accountable for management and control tasks.
We will use the networking control module to implement
security.
A topology manager, code-named Whale, stores network
node and link status information in the form of graph. This
graph contains how nodes are connected, what routes or
flows exists between each nodes, and other general measure-
ments. Whale is directly connected to an Openflow controller
to obtain and update physical and virtual network properties.
It also acquires physical and virtual node properties. The
cloud controller in SAVI is based on OpenStack. Whale
directly transmits required information to Janus for control
purposes[7].
In the next sections we discuss network attacks and how our
design can employ Janus to act upon them.

III. NETWORK ATTACKS
Rapid increase of internet speed and computational power

has enabled attackers to launch Denial of Service (DOS)
attacks. The attackers may use personal computers to initiate

978-3-901882-76-0 @2015 IFIP 778



an attack to bring down target servers. These servers will not
be able to handle their incoming traffic, therefore they will
fail to provide service to normal users in the worst case.
In a Distributed Denial Of Service (DDoS) Attack. A bot-
herder (malware producer) will slave a set of geographi-
cally distributed computers to send fake requests to target
servers[8]. Since these requests are not directly coming from
the bot-herder, it is usually very difficult to detect the bot-
herder in DDoS attacks.

IV. SAVI SDI TO IMPLEMENT NFV SECURITY
We propose SAVI SDI for network and cloud controlling

purposes to address and resolve security. Our solution is to
be scalable, dynamic, and secure for traffic management.
Since SAVI SDI is connected to Whale, it is aware of
every network route that exists on the OpenFlow switches.
This allows SDI to centrally control and re-route or manage
security hazards depending on the type of security issue.
Central control of SDI and its access to Whale permits it to
be aware of the system as a whole.
There are a number of features in SAVI SDI that makes
it a powerful platform in terms of security implementa-
tions: dynamical placement of VMs, allocation of network
resources via cloud computing, smart functionality based
module associator, and smart traffic and routing controller.
Since the SDI Manager has control over both network
resources, cloud computing resources, as well as Whale, it
is capable of being programmed to optimally place security
modules according to network topology. This placement
can be enforced by Service Providers or Internal networks
according to their target in terms of quality of service.
SDI allows dynamic allocation of network resources for
security modules. Such modules can therefore vary in terms
of processing power and monitoring functionality purposes.
This feature becomes handy as incoming traffic grows due to
higher demand of a server or as a Service Provider expands
its security policy.
We will show that SAVI/SDI is capable of implementing
layers of security modules for different network attacks.
Therefore it is capable of blocking attacks based on their
severity in different parts of the network. This feature takes
advantage of SDI Manager accessing Whale as well as
network manager. Whale may identify the critical points for
layer implementations and SDI will take the order and put
software defined functions in place.
SAVI/SDI has access to SDN controllers and shall act upon
a malicious traffic either by blocking it or forwarding to
a different server for study purposes. These ”fake” servers
are generally called Honey Pots that are used to analyze
security attacks SDI uses Whale’s knowledge of the network
to determine a proper network point for applying preventing
measure.
It is usual for an attacker to forge an IP address of a user,
meaning an attacker sends packets with a different IP than
his. This is usually done since an attacker does not want his
own IP to become evident. Therefore an attacker floods a
server with random different IP addresses. This kind of at-
tack is inherently prohibited by Janus. Janus prevents this by
using security measures on its OpenFlow switches. Hence,

it sets forwarding-rules according to connected internal IP
addresses that are issued and authenticated via the SDI itself.
Hence any divergence between source IP address and the IP
rules that are in place will cause the packets to be dropped.
Moreover, flooding with different source IP addresses will be
rejected in the closest OpenFlow switch. This synchronicity
will prevent attackers to forge IP addresses through SAVI
SDI.
As previously mentioned, some attackers use malwares to
initiate attacks from other insecure devices generally known
as bots. These compromised machines behave as puppets
for the attacker and initiate an attack. One type of security
attack is a DDOS attack. This attack will be detected
via Intrusion Detection Systems (IDS). IDS is to identify
malicious system activities and violation of system policies.
Usually a detection is followed by some way of reporting the
intrusion to system administrators. Some Network Intrusion
detection systems have the capability of preventing intrusion
themselves.
One way to detect an intrusion is to use deep packet
inspection. In the deep packet inspection method, an IDS
will go over packets and compare them with previous
well-known network traffic patterns. Reports contain any
digression from these patterns. Two possible methods for
IDS are statistical anomaly-based IDS and signature-based
IDS. In the former, either a previously written rules or a set
of learning algorithms try to identify the intrusion with a
high probability. In the latter, the packet will be inspected
and a set of signatures will be compared with a signature
database to assure the legitimacy of traffic. Both methods
have pros and cons that are out of scope of this paper. In
the following we will describe how the IDS is implemented
in the SAVI Testbed.
As mentioned SDI is capable of design and allocation
of dynamic security modules. Lets consider one security
module (shown in Fig.1). The SDI Security Module manager
requires several information sources to assist its decision
making: SDI Monitoring and Measurement, Whale and SDI
Network Control Module.
Consider a security module that detects certain types of DOS
attack. For the victim, we use a webserver that contains a
webpage that is to be a point of interest for attackers. Attack-
ers will try to flood the webserver using their bandwidth and
high processing power. A typical result would be exhaustion
of webserver’s resources to respond back to the requests sent
by the attackers. Consequently the webserver will be unable
to provide service to normal users. The proposed security
module employs a statistical anomaly based IDS as a deep
packet inspector service to study and monitor the behavior
of packets moving toward the targeted webserver. Right after
the attack occurs, the deep packet inspector will identify the
attack and raises a flag indicating that an attack has occurred.
There are two methods for using the IDS. One is the case
that the IDS only monitors the data by tapping from the line
and the other could be placing the IDS on the line as a serial
module. We tested both of these scenarios. In comparison,
the former had a near line speed performance since the
computation is completely separate from the forwarding
switch. Thus, the performance of switch does not degrade

2015 IFIP/IEEE International Symposium on Integrated Network Management (IM2015): Short Paper 779



in the tapping case. In the latter, IDS system may be
further employed to perform the job of a Network Intrusion
Prevention System as well. The issue is that the inspection
part is CPU intensive. Since the CPU allocated for the
IDS gets occupied by packet inspection, the performance
of forwarding section of the VM gets affected. Therefore if
the DPI was used as an inline mode, the line speed becomes
very limited and hence a bottleneck.
It is true that all of these depend on the resources of the
VM that the security module is operating on and one can
argue that by increasing the computation power on the inline
mode, the forwarding will not be affected. In this paper we
will focus on tapping which seems better suited version for
this task. Since the number of security rules that needs to be
processed might increase over time, the tapping solution is
more scalable. Using a combination of IDS in the tap mode
and SDIs security module manager as the prevention system
will be a good match to secure the web server.
The deep packet inspector also has the capability of identi-
fying the attackers (in this case compromised users). Right
after the attack was detected and the bots were flagged, the
attack will be sent to SDI Security module manager as a
report. This report allows Janus take a global decision on the
network. In here, SDI Security manager contacts Whale to
acquire the location of the reported IP addresses. Topology
refers to its graph based database to locate IP addresses.
At this point Janus makes a decision based on its security
module manager to either study the attack or to block the
attack.

IV-A. Possible Intrusion Prevention Scenarios
There are three possible Intrusion Prevention scenarios:

Blocking the attack in the back end, blocking the attack
in the front end, and study the attack in a different server
(Fig.1).
In the case of an attack, a first short term solution is to

Fig. 1. Three possible Attack Prevention methods on
SAVI/SDI

block packets associated with intrusion from reaching to
original server. This action plan is initiated by sending a

message to modify a flow in a switch near the IDS security
module. Here the packets are blocked near the victim web-
server.
If SDI determines that the attack is not that critical,
SAVI/SDI will create a honey-pot (a copy of the original
server) and direct the attack to the honey pot. The location
of honey pot will be determined via a decision from Whale
as well as the SDI security module manager. This decision
aims to minimize the honeypot cost in the system.
In case that the SDI does not find the attack interesting
enough to explore with Honey Pot, it will contact Whale to
map and locate the compromised IP address and its nearest
Open-Flow switch. Then SDI will directly block the IP
address at its closest openflow switch (front end). At the
end SDI will try to remove malware from the specified
device.
In the case that the security module manager decides to
study the attack, SDI will determine a suitable point in the
network to instantiate a Honey Pot server.

V. EVALUATION

In this section, we discuss the testing and verification of
the proposed methods. Parameters of interest include attack
detection and response time, resource utilization and the
transitional time from attack detection to mitigation.
Here we have initiated a DDOS attack from a number
of VMs to a web-page. The number of attackers for our
experiment has been set to 4. At this moment, SNORT [9]
which is an open software has been employed as an IDS.
Snort is a free open source software for network security. It
implements intrusion detection and prevention by means of
Deep Packet Inspection (DPI).
All of the experiments have been developed and evaluated
on SAVI Testbed, which as mentioned, is an implementation
of SDI. The IDS sits on a VM that has been created via
SAVI SDI. Here, the system was examined under a set of
attack prevention methods and the corresponding system
performance was extracted. In the case that there are no
security modules in place, as the number of attackers in-
crease, the webpage loading time increases as well. To fully
study the attack, the resources such as CPU usage, memory
usage, and bandwidth utilization on a VM were monitored.
It was quite surprising to observe that with the number of
attackers that we studied, the only depleted resource was the
incoming/outgoing bandwidth of the web-server. The CPU
usage rose only by nearly 2% and memory had a similar
increase, while the bandwidth of the traffic had a huge boost
as the flood of traffic came in.
To assure that the system is properly responding to attack
scenarios, two mitigation have been tested: Front end block-
age, and Honey-pot. In Fig.2 the bandwidth resources on
the web-server has been monitored. As soon as an attack
is initiated, a spike in the bandwidth utilization is visible.
This attack is followed by an automatic detection from IDS
and a report to SDI security manager to block the attackers.
Hence the bandwidth utilization will go back to normal after
the attack. To do a sanity check on Honey Pot system, the

2015 IFIP/IEEE International Symposium on Integrated Network Management (IM2015): Short Paper780



Fig. 2. Web-server bandwidth utilization under attack and
prevention

bandwidth utilization has been looked at for the real web-
server as well as the Honey Pot server for a same period
of time. In Fig.3 we can observe that the traffic has been
shifted from the Real Server to the Honey Pot after the
attack is detected. The next important factor for our purpose

Fig. 3. Attack has been shifted from Webserver to Honeypot

is a response time from the initiation of attack to time of
their blockage. Our purpose is to demonstrate the reasonable
performance of the system. This end-to-end number varies
according to the number of rules that are in place for the
IDS module. But for our test purposes, the detection and
re-routing numbers are demonstrated in Table I.

Table I. Timing for detection and different mitigations.

.

Time to detect on Average 2.5 seconds
Honey Pot transfer < 4 seconds

Block the IP < 2 seconds
Detection + Block < 4 seconds

Detection +Honey Pot < 7 seconds

VI. CONCLUSION
In this paper we introduced an architecture for providing

security services to application using Virtualized Security
Functions in a Software Defined Structure. We described
how SDI can facilitate scalable and efficient deployment
of security functions and how it can be utilized by se-
curity functions to take action when a security threat is

detected. We demonstrated the effectiveness of proposed
security solution by developing a fully working Deep Packet
Inspection system on the SAVI Testbed which a prototype
of a Sofwtare Defined Infrastructure and has been deployed
in seven Canadian universities. Providing measurements, we
argued that our architecture is not only well suited for
short term detection and quick reaction to security threats,
but also it utilizes SDI features to block attackers from
entering the network. For future work, we will look at
ways to further utilize SDI features in demonstrating a large
scale security system that could provide security for all
applications running on a Software Defined Infrastructure.

VII. REFERENCES
[1] Joon-Myung Kang, H. Bannazadeh, and A Leon-Garcia,

“Savi testbed: Control and management of converged
virtual ict resources,” in Integrated Network Manage-
ment (IM 2013), 2013 IFIP/IEEE International Sympo-
sium on, May 2013, pp. 664–667.

[2] Porras, “A security enforcement kernel for openflow
networks,” in Proceedings of the First Workshop on Hot
Topics in Software Defined Networks, New York, NY,
USA, 2012, HotSDN ’12, pp. 121–126, ACM.

[3] Popa, “Cloudpolice: Taking access control out of the
network,” in Proceedings of the 9th ACM SIGCOMM
Workshop on Hot Topics in Networks, New York, NY,
USA, 2010, Hotnets-IX, pp. 7:1–7:6, ACM.

[4] Rob Sherwood, Glen Gibb, Kok-Kiong Yap, Guido
Appenzeller, Martin Casado, Nick McKeown, and Guru
Parulkar, “Flowvisor: A network virtualization layer,”
OpenFlow Switch Consortium, Tech. Rep, 2009.

[5] G. Piccinelli, C. Zirpins, and W. Lamersdorf, “The
fresco framework: an overview,” in Applications and
the Internet Workshops, 2003. Proceedings. 2003 Sym-
posium on, Jan 2003, pp. 120–124.

[6] T. Lin, Joon-Myung Kang, H. Bannazadeh, and A Leon-
Garcia, “Enabling sdn applications on software-defined
infrastructure,” in Network Operations and Management
Symposium (NOMS), 2014 IEEE, May 2014, pp. 1–7.

[7] Hadi Bannazadeh Joon-Myung Kang, Thomas Lin and
Alberto Leon-Garcia, “Software-defined infrastructure
and the savi testbed,” International Conference on
Testbeds and Research Infrastructures for the Devel-
opment of Networks and Communities (TRIDENTCOM
2014), 2014.

[8] B. Al-Duwairi and G. Manimaran, “Just-google: A
search engine-based defense against botnet-based ddos
attacks,” in Communications, 2009. ICC ’09. IEEE
International Conference on, June 2009, pp. 1–5.

[9] “Snort,” http://www.snort.org, Accessed: 2014-09-30.

2015 IFIP/IEEE International Symposium on Integrated Network Management (IM2015): Short Paper 781




