
ViNO: SDN Overlay to Allow Seamless Migration
Across Heterogeneous Infrastructure

Spandan Bemby, Hongbin Lu, Khashayar Hossein Zadeh, Hadi Bannazadeh, and Alberto Leon-Garcia
Dept. of Electrical and Computer Engineering,

University of Toronto
{spandan.bemby, hongbin.lu, k.hosseinzadeh, hadi.bannazadeh, alberto.leongarcia}@utoronto.ca

Abstract—We propose ViNO (Virtual Network Overlay), an
orchestration service that can be used to create arbitrary network
topologies with OVS (Open vSwitch) switches and VMs. ViNO
connects switches and VMs through an overlay network using
VXLAN encapsulation. ViNO provisions VMs by making API
calls to the underlying platform. Users specify the desired
topology using an expressive Domain Specific Language that
allows users to easily express commonly used network topologies
while hiding the underlying complexity. An important use case
for ViNO is enabling the seamless migration of Linux services
across VMs in different regions with very little downtime.

Orchestration, SDN, Cloud computing

I. INTRODUCTION

Future application platforms will be based on the principles
of cloud computing and software-defined networking (SDN)
[1]. Cloud computing leverages the virtualization of physical
computing resources to simplify management and to allow
sharing of resources [2]. SDN separates a network’s control
plane from its data plane to provide both fine control and
flexibility to perform complex tasks.

Such environments pose new challenges that involve com-
puting and networking, specifically: 1) the placement and
migration of VMs and their interconnecting network, as de-
mand or capacity changes, or in response to failures; 2) the
transition period where applications must operate over SDN-
enabled islands and legacy networks. We present an approach
for creating overlay networks that leverage SDN capabilities
to address these challenges. ViNO (Virtual Network Overlay)
is an orchestration service that creates arbitrary network
topologies with Open vSwitch (OVS) switches (OVS is a
production quality virtual multilayer switch)[6] and VMs. We
have developed ViNO in the context of a major Canadian
project to design and deploy a testbed to explore future
application platforms within the NSERC Strategic Network for
Smart Applications on Virtual Infrastructures (SAVI) [3]. The
SAVI Testbed (TB), operates with OpenStack and OpenFlow
enabling it to exploit the increasing capabilities of these two
initiatives.

II. OVERVIEW

Consider experiments that require a network configuration
that may not be directly realizable. For instance, an experiment
may require more VMs-than can be actually placed- to be
placed within a specific broadcast domain. In general, there

may be experiments where computational and network require-
ments conflict. This problem can be overcome using overlay
networks created through tunneling protocols like VXLAN.

Now consider a user who may be interested in prototyping
a network topology. The experiment may consist of creating
VMs, configuring them, retiring them, dynamically creating
and connecting new VMs, etc. This is typically done either
manually, or through ad-hoc scripts. Doing this manually can
be prohibitively time consuming because the user needs to:
1) know the VM provisioning APIs of many cloud platforms,
2) know how to configure switches, and 3) remotely log into
multiple VMs to cross configure them.

To solve this problem, we propose a tool that orchestrates
the creation of arbitrary network topologies- ViNO. ViNO is
an orchestration tool for the SAVI Testbed that can manage
the lifecycle of an experiment. This includes the creation,
retirement, and modification of nodes (a term to collectively
refer to VMs and soft-switches) and their interconnections.
To use ViNO, the user specifies the topology using a domain
specific language (DSL). The DSL is parsed by ViNO, which
realizes the infrastructure using the API of the underlying VM
provisioning module.

In this paper we also show results of live migrating Linux
services (containers) across different VMs. A container is a
form of lightweight virtualization that allows multiple isolated
instances of the system to be run on a single operating
system [4]. The containers retain their state, including running
processes, and their MAC and IP addresses, respectively. The
key advantage of Linux containers is that they are platform ag-
nostic [4]. This allows us to use and migrate containers across
heterogeneous infrastructures, including different clouds like
the SAVI TB, Amazon EC2, and legacy computing servers.

Migration also demonstrates the need for SDN. Without
SDN, the migration of MAC and IP addresses would cause a
complicated reconfiguration of the network that would disrupt
network service. These disruptions prevent the migration from
being seamless since the migrated services becomes unavail-
able for long periods, i.e. until a traditional network learns
the new location of MAC and IP addresses. With SDN, we
can proactively install flow rules, which can make network
forwarding reconfiguration and the migration, seamless.

We have 2 primary contributions: 1) the design and imple-
mentation of ViNO and a DSL for easily describing arbitrary
topologies, 2) the seamless migration of services across het-

978-3-901882-76-0 @2015 IFIP 782



nodes['sw1'] = {'contr_addr': '10.12.11.26:
6633', 'region':'CORE', 'flavor': 
'm1.small', 'bridge_name': 'sw1_br', 'int_ip':
('p1', '192.168.200.18')}
nodes['sw2'] = {'contr_addr': '10.12.11.26:
6633', 'region':'EDGE-TR1', 'flavor': 'm1.
small'}
nodes['h1'] = {'region':'CORE', 'flavor': 'm1.
tiny'}
nodes['h2'] = {'region':'CORE', 'flavor': 'm1.
tiny'}
topology['sw1'] = [('h1', '192.168.200.10', 
'h1_br' )]
topology['sw2'] = ['sw1', ('h2', 
'192.168.200.11')]

1

2

3

4

5

6

Fig. 1. An example of a topology declaration using the DSL.

erogeneous infrastructure.

III. DESIGN

A. Architecture

ViNO allows the orchestration of networks that consist of
VMs, switches, and their interconnections. The switches are
softswitches, specifically OVS switches. ViNO handles provi-
sioning VMs and configuring some of these VMs as switches.
The overlay interconnection between VMs is created through
VXLAN encapsulation[5]. VXLAN can create arbitrary Layer
2 (L2) or Layer 3 (L3) networks by encapsulating L2 frames
in L3 UDP packets.

To use ViNO, users need to authenticate themselves by
specifying their credentials in the config file. Next, the users
specify the topology using the DSL, in the topology file. Once
the topology is specified, the user can instantiate the topology
using the ViNOLauncher script, which provisions the VMs,
configures them, and configures the overlay network. ViNO
parses the topology and provisions the VMs on the SAVI
Testbed. If the user intends to modify the topology at run-time,
they should use the SetupNodes and SetupTopology scripts to
create nodes, and setup the interconnections, respectively.

B. Python Based DSL

The user specifies a topology and the interconnections
between hosts and switches using a Python-based DSL. The
DSL is meant to be declarative and expressive. The language
supports multiple regions.

Figure 1 shows the declaration of an example topology.
Lines 1 and 2 show the declaration for a switch. Lines 3 and
4 show the declaration for VMs. Lines 5 and 6 shows how
a switch is connected to a host, and the overlay IP address
of the host. This is the IP address that is associated with the
VXLAN interface that connects the switch to the host. Note,
this IP address is different from the IP address that the VM
provisioning system assigns to the VM.

h1
(Host)

h2
(Host)

sw1 
(OVS)

ViNO

Overlay
CORE Region
EDGE-TR1 Region

Controller
(10.12.11.26:6633)

Nova Neutron

... ...

sw2
(OVS)

Fig. 2. Example topology and the connection between elements. A dashed
arrow represents a procedure call or a configuring event. A solid arrow
represents a connection between elements. ViNO makes calls to Nova and
Neutron. Nova and Neutron are components of the cloud management
platform used by SAVI TB and OpenStack. Other cloud services like Amazon,
have a similar architecture.

C. Setting Up Nodes

OpenStack exposes a RESTful API to provision VMs.
The API allows us to launch VMs and configure various
parameters, such as the image to be used. ViNO parses the
topology file and determines how many VMs to launch. It
then determines which of these to configure as switches and
which to configure as hosts. ViNO determines the value for
each configuration parameter for each node by reading the
specified value or using the default if a value is unspecified.
The SetupNodes script uses the nova client to send requests
to the server to provision the VMs.

D. Setting Up Topology

The nodes are connected using logical links created using
VXLAN tunnels. The VXLAN header contains a 24 bit
VXLAN Network Identifier (VNI) field. VMs are only allowed
to communicate with VMs with the same VNI [5]. VXLAN
overlay segments exist between VXLAN Tunnel End Points
(VTEP). The VTEPs are responsible for encapsulating and
decapsulating VXLAN headers. An OVS bridge acts as a
VTEP. To configure the VMs and switches, ViNO creates
a bridge inside the VM (the bridge is needed to send and
receive packets over the VXLAN overlay). Next, it creates
another port for VXLAN communication. Then, ViNO sets
the internal IP address of this port. The newly created port can
be configured and assigned an IP address. Figure 3 illustrates
how the VXLAN overlay works.

E. Dynamically Modifying Topology and Adding Nodes

To dynamically change the topology, the user must change
the topology file and run the two scripts, SetupNodes and
SetupTopology, to create nodes and setup the overlay networks,
respectively.

2015 IFIP/IEEE International Symposium on Integrated Network Management (IM2015): Short Paper 783



Original IP
Header

VM (Host 1)

Bridge VTEP

Outer Ethernet
Header

Outer IP
Header

Outer UDP
Header

VXLAN
Header

Original Ethernet
Header

Original IP
Header

Original UDP
Header Payload

VM (Host 2)

Bridge VTEP

Original Ethernet
Header

Original IP
Header

Original UDP
Header PayloadOriginal Ethernet

Header
Original IP
Header

Original UDP
Header Payload

VXLAN Tunnel

VXLAN
Header

Original Ethernet
Header

Original IP
Header

Original UDP
Header Payload

Fig. 3. An illustration of how VXLAN works.

F. Migration

The SAVI Testbed consists of two types of clouds: Core
(remote datacenters) and Smart Edge (local datacenters). This
architecture allows application administrators to optimize the
performance of their applications by placing their VMs de-
pending on the latency-bandwidth requirements of the appli-
cations. It may be desirable to change the placement of VMs
at runtime, in response to changing workloads.

VM migration [10], [11] allows a service to be dynamically
relocated. When a VM is migrated, the states of the CPU,
memory, and disk are transferred. However, cross-datacenter
migrations, due to separate management domains and hetero-
geneity of the underlying infrastructure, do not allow us to
maintain the IP address of the VMs.

One solution to this is to use nested virtualization [12], [13].
In this scheme, there are two layers of virtualization: layer 1
consists of hypervisors running on physical machines that host
VMs; layer 2 consists of layer 1 VMs emulating hardware to
further host VMs. In this case, the management plane resides
in the user space, and so IP addresses can be maintained
across migrations. However, there are some shortcomings of
this approach. VMs are typically stored in vendor specific
formats, such as VMWare’s vmdk, Oracle Virtualbox’s vdi,
and Amazon EC2’s ami, which poses portability issues when
moving VMs across environments [8]. An even bigger concern
is performance- due to: 1) the large size of a VMs, 2) layer
2 VMs being emulated (rather than virtualized). Initially,
we considered this scheme using QEMU [7]. We found it
challenging to migrate the hosted VMs across heterogeneous
platforms and migration took a prohibitively large amount of
time and had a high resource overhead.

An alternative is to have the layer 2 virtualization consist
of containers. Primitives required to support containers are
supported by most distributions. This makes Linux containers
platform independent and allows heterogeneous deployments.
Compared with VMs, containers share the kernel with other
containers and therefore have a lower overhead and can be
migrated faster [8]. For our experiment we used OpenVZ
containers, which is a mature containerization project that

supports live migration [9]. Using this scheme we migrated
containers across datacenters in the SAVI Testbed. We built
layer 2 virtualization by performing the following steps:

1) Provision VMs on SAVI TB; install OpenVZ on the VM.
2) Create and configure OpenVZ containers.
3) Construct an overlay private network to connect all

OpenVZ containers.
The overlay network constructed in step 3 is an independent

network that uses a separated IP address space, which was
constructed in the following manner.

1) Configure OpenVZ to ensure that each newly created
OpenVZ container will automatically obtain a private
IP address from the same subnet.

2) Connect collocated OpenVZ containers by an OVS
bridge (we had to modify the OVS kernel module to
be able to compile it with the OVZ kernel).

3) Use ViNO to setup overlay topology to connect contain-
ers.

It is possible to migrate OpenVZ containers across different
datacenters without changing its IP address. This prevents in-
terruptions due to migration, for end-users who are connected
to the hosted application.

Although we envisioned an overlay system that enables a
seamless application relocation, deploying such a system is
a non-trivial process because it involves provisioning VMs
from different datacenters, installing the necessary middle-
ware on the provisioned VMs and cross-configuring the VMs
to setup the overlay network topology. For a large system
that requires a large number of VMs and a sophisticated
network topology, the deployment process will be infeasible.
Furthermore, deploying such systems requires knowledge from
many different domains (e.g. networking, operating system,
cloud computing)- which system deployers may not have.
To address these challenges, we created ViNO to automate
the deployment process. ViNO allows us to specify complex
network topologies and the overlay network connecting VMs
in a human-readable language. This is crucial in facilitating
the deployment process and reducing human errors. Figure 5
illustrates how VM migration works.

IV. EVALUATION

We conducted two experiments to evaluate ViNO. First, we
evaluated the performance of ViNO in setting up different
network topologies; second, we demonstrated the feasibility of
a system that supports migration of Linux container by using
ViNO. In both experiments, ViNO was hosted by a server with
4 virtual CPUs and 8GB of RAM.

A. Experiment 1

The goal was to evaluate the performance of ViNO in setting
up various network topologies on the SAVI TB. Each VM
had 1 virtual CPU and 2GB of RAM, using the CentOS
image with OVS pre-installed. It took roughly 30 seconds
for ViNO to setup a 3, 6, 9, and 12 node topologies, and
it took roughly 50 seconds to setup a 24-node topology. We

2015 IFIP/IEEE International Symposium on Integrated Network Management (IM2015): Short Paper784



Controller

Host2 Host3Host1

Container

Migration

VXLAN

Fig. 4. The deployment overlay network.

15

9

se
co
nd
s

Baseline
ViNO

Fig. 5. Total migration time.

observed that the time to setup a topology was independent of
the number of nodes since ViNO automatically parallelizes the
tasks executing on each node. However, for large topologies,
we observed moderate performance degradation.

B. Experiment 2

We used ViNO to construct an overlay network and eval-
uated the performance of migrating a Linux container across
datacenters. The setup included two VMs provisioned across 2
data centers Initially, there was a container on host 1 running a
Tomcat HTTP server. We simulated a client by using JMeter1,
which would send HTTP requests every 0.5 seconds. We then
migrated the the Tomcat container to host2, and measured the
response time.

We measured application downtime, the time that the ap-
plication is unable to serve its clients. Downtime is composed
of : 1) migration time, and 2) network refractory time.

The experiment was conducted under two settings. First,
the switches were learning switches. Second, we used ViNO
to deploy OpenFlow switches that were connected to a Ryu2

controller, which removed the switches learning time. Figure
8 shows that we were able to reduce the application downtime
from 15 to 9 seconds by using ViNO and SDN.

V. RELATED WORK

Mininet [14] is a network emulator that creates virtual hosts,
links, and switches all on a single Linux kernel. This makes
Mininet unusable when one wants to test an application with a
large number of interconnected entities, with realistic delays.

1http://jmeter.apache.org/
2https://github.com/savi-dev/ryu

MaxiNet [15] is a SDN network emulator that extends
Mininet across several physical machines. MaxiNet employes
a traffic generator, to emulate realistic traffic conditions. Max-
iNet is an emulation framework that sits on top of physical
machines; whereas ViNO sits on top of the OpenStack plat-
form. This makes extending ViNO easier.

Distributed OpenFlow Testbed (DOT) [16] is an emulator
for SDN. DOT emulates a network topology across a cluster of
physical machines. The physical machines emulate the hosts
and the virtual switches. Virtual machines can be located on
different physical machines, and interconnected with GRE
tunnels.

VI. CONCLUSION

ViNO orchestrates overlay networks, and allows users to
do things that would have been otherwise infeasible. ViNO
has many use cases. In particular, the ability to live migrate
VM containers across heterogeneous platforms with minimal
downtime is very powerful and has significant implications for
datacenters.

ACKNOWLEDGMENT

This research was supported by the National Sciences and
Engineering Research Council (NSERC) of Canada.

REFERENCES

[1] Converged Infrastructure. http://www.cioandleader.com/cioleaders
/features/7505/converged-infrastructure

[2] Amazon. What is Cloud Computing. http://aws.amazon.com/what-is-
cloud-computing/

[3] SAVI Network. http://www.savinetwork.ca/
[4] Linux Containers. https://linuxcontainers.org/
[5] VXLAN Draft. http://tools.ietf.org/html/draft-mahalingam-dutt-dcops-

vxlan-00
[6] Open vSwitch: B. Pfaff, J. Pettit, K. Amidon, M. Casado, T. Koponen,

and S. Shenker, Extending Networking into the Virtualization Layer. In
Proceedings of Hotnets, 2009.

[7] Qemu. www.qemu.org
[8] Docker. https://github.com/docker/docker
[9] OpenVZ. http://openvz.org/

[10] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt
and A. Warfield, ”Live migration of virtual machines,” in Proceedings
of the 2nd conference on Symposium on Networked Systems Design &
Implementation, Boston, MA, 2005, pp. 273-286.

[11] R. Bradford, E. Kotsovinos, A. Feldmann and H. Schiberg, ”Live wide-
area migration of virtual machines including local persistent state,” in
Proceedings of the 3rd international conference on Virtual execution
environments, San Diego, CA, 2007, pp. 169-179.

[12] M. Ben-Yehuda, M. D. Day, Z. Dubitzky, M. Factor, N. Har’El, A.
Gordon, A. Liguori, O. Wasserman and B.-A. Yassour, ”The turtles
project: design and implementation of nested virtualization,” in Pro-
ceedings of the 9th USENIX conference on Operating systems design
and implementation, Vancouver, BC, 2010, pp. 1-6.

[13] D. Williams, H. Jamjoom and H. Weatherspoon, ”The Xen-Blanket:
virtualize once, run everywhere,” in Proceedings of the 7th ACM
European conference on Computer Systems, Bern, 2012, pp. 113-126.

[14] Mininet: https://github.com/mininet/mininet/wiki/Introduction-to-
Mininet#what

[15] P. Wette, M. Draxler, A. Schwabe, F. Wallaschek, M.H. Zahraee and H.
Karl, MaxiNet: Distributed Emulation of Software-Defined Networks in
Proceedings of IFIP, Trondheim, 2014, pp. 1-9.

[16] A.R. Roy, M.F. Bari, M.F. Zhani, R. Ahmed, R. Boutaba, ”Design and
management of DOT: A Distributed OpenFlow Testbed” in Proceedings
of NOMS, Krakow, 2014, pp. 1-9.

2015 IFIP/IEEE International Symposium on Integrated Network Management (IM2015): Short Paper 785




