978-3-901882-76-0 @2015 IFIP

Monitoring and Measurement in Software-Defined
Infrastructure

Jieyu Lin, Rajsimman Ravichandiran, Hadi Bannazadeh, Alberto Leon-Garcia
Electrical and Computer Engineering
University of Toronto
Toronto, Ontario
Email: {jieyu.lin,rajsimman.ravichandiran,hadi.bannazadeh,alberto.leongarcia} @mail.utoronto.ca

Abstract—Software-Defined Infrastructure (SDI) presents an
approach for integrated management of virtualized heterogeneous
resources. Monitoring and measurement is an essential compo-
nent for effective control and management. This paper presents
an architecture of a system, named MonArch, based on SDI that
provides integrated monitoring and measurement functionalities.
Unlike existing cloud and network monitoring systems, MonArch
supports execution of user-generated monitoring tasks, offers
monitoring as a service to tenants, administrators as well as
management modules, and provides a framework for monitoring
data analytics. We have implemented and deployed MonArch in
the SAVI Testbed, and our experience shows the system is able to
support a wide variety of monitoring tasks while achieving high
performance and scalability.

I. INTRODUCTION

As cloud computing and virtualization technologies
evolved quickly in the past few years, it has become apparent
that in certain settings cloud computing systems will utilize a
variety of virtualized resources. A prime example is in the edge
of the network were virtualized programmable hardware may
be required to provide the required levels of performance. To
meet this need, we introduced the concept of Software Defined
Infrastructure (SDI) in [1]. SDI presents an architecture for
integrated management of heterogeneous resources. We used
the SDI concept in designing the Smart Applications on Virtual
Infrastructure (SAVI) Testbed which is intended for experimen-
tation with future applications and services. To effectively and
dynamically manage resources, SDI requires monitoring and
measurement of the converged heterogeneous resources.

Although there has much research and many projects on
monitoring and measurement, there are still some missing
pieces and challenges in cloud environment. First, due to the
heterogeneous nature of cloud infrastructure, a monitoring and
measurement system (MMS) should be capable of performing
scalable integrated monitoring of converged heterogeneous
resources. For example, in the SAVI Testbed’s two-tiered cloud
infrastructure, in addition to the traditional compute, storage,
and network resources, we also have GPU, programmable
hardware (e.g. FPGA), wireless access point, and Software
Defined Radio (SDR) resources. In order to effectively manage
the whole infrastructure, the MMS needs to handle all these
resources and provide extensibility for new resources that
may be added to the infrastructure. Second, with the large
amount of monitoring data generated in the cloud environment
and the diverse processing/analysis requirements, traditional
MMS systems are lacking in their flexibility and capabilty

742

to perform data processing efficiently. A new monitoring
system needs to be designed to allow flexible processing of
large amount of new and historical monitoring data. Third,
in the age of cloud computing, many IT functionalities are
provided to the users “as a service”. We believe monitoring and
measurement should be provided as a service to the users of
a cloud infrastructure. More specifically, this entails providing
monitoring and measurement data as well as user-specified
analytics results to users on-demand, and allowing users to
monitor custom metrics of resources in both the infrastructure
layer and the application layer.

In this paper, we present a new monitoring and mea-
surement architecture of a system called MonArch to tackle
the challenges mentioned above. MonArch provides flexible,
integrated monitoring and measurement of heterogeneous re-
sources with data analysis functionality, and it provides mon-
itoring and analytics results to users on-demand. A challenge
in designing this system is to satisfy the requirements without
sacrificing the performance and scalability.

We have implemented MonArch using open source soft-
ware such as OpenStack Ceilometer [2] and Spark [3]. The
system has been deployed and operational on the SAVI Testbed
since May 2014. In this time, the system has demonstrated its
stable performance and its ability to meet the monitoring and
measurement needs in the Testbed.

For evaluation purposes, we have verified the functionali-
ties of the system and evaluated its performance and scalability.
For performance and scalability evaluation, we have focused
on examining the system capability to meet demand from a
large number of users and for the infrastructure to scale up. The
results show that the system is able to perform the functional
requirements and at the same time provides scalability.

This paper is organized as follows. Section II presents
related work, and Section III details the requirements of the
MonArch MMS. The system design and implementation is
presented in Section IV, followed by a system evaluation
(Section V) and conclusions (Section VI).

II. RELATED WORK

The MMS in this paper is designed based on the concept
of Software Defined Infrastructure (SDI). In [4] we elaborated
on the SDI architecture, and presented the design and imple-
mentation of the control and management system in the SAVI
Testbed.

There is a large body of research and projects focusing
on various aspects of MMS. Nagios [5] and Ganglia [6] are
traditional tools for IT infrastructure monitoring. They are
mature and stable. However, these tools only provide basic
statistics of monitoring data and can not satisfy the complex
processing requirement today. The MISURE system [7] is an
application-level cloud monitoring system that uses stream
processing. It proposed a scalable and fault tolerant framework
for monitoring applications running in a cloud environment;
however, MISURE is mainly for application monitoring and
therefore is not suitable for infrastructure monitoring.

Ceilometer is a telemetry component of OpenStack, an
open source cloud platform. It provides mechanisms for
monitoring virtual compute, network, and storage resources.
Ceilometer provides very limited analytics capability for mon-
itoring data (only average, sum, max, and min). CloudView|[8§]
and MONaaS [9] are other systems that integrate with Open-
Stack, but they have the same limitation as Ceilometer. [10]
and [11] presents solutions for cross layer monitoring. [11]
uses Ceilometer and assumes that application layer data are
available using a monitoring as service model, which raised
the question of how to provide application layer monitoring
data as a service. This question is addressed in this paper.

For Software Defined Networking (SDN), FlowSense [12]
is a push-based SDN monitoring system for network utiliza-
tion. It provides basic OpenFlow network monitoring. PayLess
[13] proposed a network monitoring framework for monitoring
OpenFlow networks. It uses a variable frequency flow-statistics
collection algorithm to improve the monitoring overhead.
OpenNetMon [14] provides per-flow metrics monitoring in an
OpenFlow network: bandwidth, delay and packet loss. The
SDN monitoring research work are area specific and cannot be
used as a general monitoring system in a cloud environment,
but it can provide network monitoring data for the MonArch
system.

On the monitoring analytics side, Monalytics [15] presents
a hierarchical monitoring and analytics system. It proposes
integration of monitoring and online analytics, and suggests
that analytic tasks should be executed locally at the monitoring
data acquisition point. This analytics model suffers from lack
of global view and fault tolerance.

Distributed Ana}lytics Req uiremeth DB
Agent - Messaging [£2 Notifier
System .
< Analytics <\ N
Stream
Agent —— ~
User g Processing & GUl <
Agent Ly
N user Storage VA
Agent —> — sers
user /' h ™ \
Receiver API|
Agent
L . Batch
Acclq_umtlon StrLeamlng Processing UseLr Access
ayer ayer Layer ayer
Fig. 1. Monitoring and Measurement System Architecture

III. REQUIREMENTS FOR THE MONITORING AND
MEASUREMENT SYSTEM

To design a MMS based on the SDI concept that is suitable
for the two-tiered cloud environment in the SAVI Testbed, we
identified the following requirements:

Integrated and Cross-Layer Monitoring and Measure-
ment: The system should be capable of monitoring the
converged heterogeneous resources in an infrastructure as well
as the applications running on the infrastructure. Heteroge-
neous resources include physical and virtual compute, network,
storage, GPU, programmable hardware, and wireless access
points.

Data On-Demand: Monitoring and measurement data
should be available on-demand to the users and the manage-
ment modules. In a cloud infrastructure, management modules
and users obtain monitoring information or analytics results
from MMS in order to make real-time decisions.

Support for Custom Metrics: Due to the nature of appli-
cations, the monitoring requirements will vary from application
to application. Since it is not realistic nor efficient to monitor
every metric that users might need, the system allow users to
monitor user-specified custom metrics.

Others: Other requirements include 1) Storing historical
monitoring data; 2) Providing (near) real-time processing ca-
pability; 3) Scalability; 4) Elasticity

IV. SYSTEM DESIGN AND IMPLEMENTATION

We now describe MonArch which is designed based on
SDI and the requirements in the last section.

A. Design and Architecture

The high level logical architecture of MonArch is shown
in Figure 1. This architecture is divided into four vertical
layers: acquisition, streaming, batch processing, and user ac-
cess layer. Monitoring data generally moves from left to
right. The acquisition layer obtains or generates monitoring
and measurement data. These data are sent to the streaming
layer for transport and stream processing. The raw data (and
optionally the stream processed data) are then sent to the batch
processing layer for storage and batch analytics. Users can
access the monitoring data and analytics results through the
access layer. This architecture allows the system to achieve
monitoring data collection, processing (stream and batch), and
distribution functionalities with scalability and flexibility.

1) Acquisition Layer: The acquisition layer is responsible
for acquiring and obtaining monitoring data and submitting it
to the streaming layer. There are three kinds of components in
this layer: agent, user agent, and user agent receiver.

Agent: Agents acquire basic infrastructure level monitoring
data and send it to the streaming layer. These data include
virtual and physical server states, network states, and all other
metrics that need to be monitored.

User Agent: A User Agent allows users to monitor custom
metrics. Through the User Agent, users can specify the metrics
to monitor and an optional monitoring frequency. Examples of
custom metrics include web server metrics (e.g. requests per
second, request latency, request location, number of connec-
tions), database throughput, number of online applications.

User Agent Receiver: The User Agent Receiver accepts
monitoring data from User Agents, checks the format, and
performs access control. If there is no problem with monitoring
data, it sends the data to the streaming Layer. The main purpose

2015 IFIP/IEEE International Symposium on Integrated Network Management (IM2015): Short Paper 743

of this component is to protect the system from user attacks
through the User Agent. This component could be used in the
future for billing purposes as well.

2) Streaming Layer: The streaming layer is responsible
for transporting monitoring data to the storage module and
performing stream processing for real-time analytics purposes.
The layer includes a messaging system and a stream processing
system.

Messaging system: As the monitoring data are generated
and sent to the streaming layer, the messaging system buffers
the data before it is processed by the Stream processing
module. We emphasize that the Messaging system should be
distributed and scalable.

Stream Processing: The Stream Processing module is
responsible for (near) real-time processing of the incoming
monitoring data. It retrieves monitoring data from the Messag-
ing system and performs required processing tasks and actions.
Examples of stream processing include detecting temporal
or spatial correlation of the monitoring data across different
resources, and detecting anomalies based on predefined or
learned patterns. The Stream Processing module must be
scalability.

3) Batch Processing Layer: This layer is responsible for
storage and analytics of the stored monitoring data. It has
two modules: Storage and Analytics. These modules operate
cooperatively with the modules in the streaming layer.

The Storage module stores raw monitoring data as well as
results from the Analytics module and the Stream Processing
module. Raw monitoring data are sent to the Storage module
directly from the Messaging System through a driver.

The Analytics module is similar to a batch processing
system. It analyzes the monitoring data stored in the Storage
module to discover patterns, trends, and useful information
that could benefit infrastructure management and users of
the infrastructure. Analytics results are stored in the Storage
module to allow access from the Stream Processing module
and the modules in the Access layer.

4) User Access Layer: The user access layer is an interface
layer to users of the system. Users can access current and
historical monitoring data on-demand. This layer provides
capabilities for on-demand access of monitoring data. The
layer has three modules: Notifier, API, and Graphical User
Interface (GUI). Users pull for monitoring data through the
API or GUI, and receive notifications from the Notifier module
for user-specified notification conditions.

5) Analytics Requirements Database: An Analytics Re-
quirements Database (ARD) module complements the four
layers. We have mentioned that the Stream processing module
and the Analytics module need to perform required monitoring
tasks. These tasks and notification requirements are stored
in the ARD module. A user can specify the tasks and the
notification conditions through the API module or the GUI
module.

V. SYSTEM EVALUATION

We now present the system evaluation of MonArch. For
evaluation purposes, we deployed the system in virtual ma-
chines (VMs) in the SAVI Testbed and conducted a series

g : : : : : 40 &
= 1,000 || —®— throughput g
% 800 H = latency 130 é‘
= b2
= 600 |- -120 3
2. | o
) 400 -110
2 200 g
= | | | | | | | <
B

3 4 5 6 7 8 9
Number of API servers

Fig. 2. System Scalability for User Requests

o

a2

E) 1,200 [7
g 1,000 + B
Q L |
£ 800

o 600 - N
£ 400 | B
3 200 L ! \ | | L
S 1 2 3 4 5 6

Number of storage drivers
Fig. 3. Maximum average monitoring data collection rate

of experiments to evaluate the system’s performance and
scalability. We obtained the following general results:

e MonArch is capable of handling users’ requests with
short delay. The system scales up closed to linearly to
support increasing number of user requests.

e Ags the size of the infrastructure and the number of
monitoring tasks increase, MonArch is able to process
the large number of incoming monitoring messages
and store them in the database. This part also scales
close to linearly as we replicate the storage driver.

Next, we discuss the environment that the system is deployed
on, and then we present the details about system performance
and scalability.

A. Evaluation Environment

For evaluation, MonArch is deployed in VMs in the
SAVI Testbed’s Core node. The API module (modified from
Ceilometer API) is deployed in an extra large VM instance (8
virtual CPU cores, 16G memory, and 160G hard disk). The
Agents are running in a large VM instance (4 virtual CPU
cores, 8G memory, and 80G hard disk). The storage module
(Cassandra database) is deployed in 2 medium VM instances
(2 virtual CPU cores, 4G memory, and 40G hard drive).
The Storage drivers (for writing data from messaging system
to storage module) run in the same VMs as the Cassandra
database. The streaming and batch processing module (Spark
clusters) run in three medium VM instances (one for the
master, two for the workers). The messaging system (Kafka)
runs in a medium VM instance.

744 2015 IFIP/IEEE International Symposium on Integrated Network Management (IM2015): Short Paper

B. Evaluation for Handling of User Requests

To evaluate the system’s performance and scalability when
handling users’ requests for monitoring data, we deployed
multiple API servers in the extra large VM instance, and we
ran a HA Proxy to evenly distribute the requests to the API
servers. The API servers are all connected to the Cassandra
database (deployed in two separate VMs). Since an API server
runs in a single process, by varying the number of API servers
running in the VM, we can observe the scalability of the
system. To run this experiment, we used the Apache Bench
utility to send requests querying for the latest monitoring
sample of a certain metrics (meter). Figure 2 shows the result
of this experiment. We can see from the figure that the
throughput (average number of requests per second) increases
approximately linearly as the number of API servers increases,
while delay remains low. From this result, we can easily see
that by replicating the API server and the VM that hosts these
API servers, we can effectively scale the system as the demand
increases. Since the increase in the latency when having more
API servers is quite small, scaling the system should not affect
user experience.

C. Infrastructure Scaling Evaluation

Another aspect of the system is its capability to collect
monitoring data and store it in the database. The amount
of monitoring data generated depends on the size of the
infrastructure and the number of active user-specified metrics.
To evaluate the system’s performance and scalability in this
part, we measure the system’s maximum average collection
rate while having a different number of Kafka servers, storage
drivers, and Cassandra database servers. For this evaluation,
we ran 20 agents (10 OpenFlow agents, 5 physical server
agents, and 5 user agents) that generate monitoring data every
5 seconds. In order to push the system to it’s maximum
performance, we also fill up the Kafka queue with about 20,000
monitoring messages. To measure the system’s collection rate,
we count the number of messages in the database and calculate
the changes over time.

In our experiment, we found that the performance bottle-
neck is the storage driver, and in order to scale the system, we
can run multiple storage drivers to improve the collection rate.
Figure 3 shows the relationship between the system’s collec-
tion rate and the number of storage drivers. As shown in the
graph, the collection rate increases approximately linearly as
the number of storage drivers increases. Since Kafka supports
partitioning and we do not require global ordering of all the
monitoring messages, replicating the Kafka server should offer
scalability. On the database size, we should be able to scale up
Cassandra by running it on more VMs. Therefore, the system’s
collection rate is scalable, which means the system is capable
of handling monitoring tasks as the infrastructure scales up
and the number of users increase.

VI. CONCLUSION

We have presented the MonArch monitoring and mea-
surement system based on the Software-Defined Infrastruc-
ture (SDI) concept. The system offers integrated and flexible
monitoring, measurement and analytics functionalities that are
available to users on-demand through open APIs. We have

implemented and deployed MonArch in the SAVI Testbed,
and conducted system evaluations. The system meets all the
functional requirements and offers high performance and scal-
ability. For future work, we will be focusing on researching
and improving the analytics part of the system to provide more
advanced anomaly detection, auto diagnosis, and root cause
analysis functionalities.

ACKNOWLEDGMENT

The work of this paper is funded by the Smart Applications
on Virtual Infrastructure (SAVI) project under the National Sci-
ences and Engineering Research Council of Canada (NSERC)
Strategic Networks.

REFERENCES

[1] J.-M. Kang, H. Bannazadeh, and A. Leon-Garcia, “SAVI testbed:
Control and management of converged virtual ICT resources,” in Inte-
grated Network Management (IM 2013), 2013 IFIP/IEEE International
Symposium on. 1EEE, 2013, pp. 664-667.

[2] “Ceilometer,” available at http://docs.openstack.org/developer/
ceilometer/, [Online; accessed 1-Febuary-2015].

[3] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing,” in Pro-
ceedings of the 9th USENIX conference on Networked Systems Design
and Implementation. USENIX Association, 2012, pp. 2-2.

[4] J.-M. Kang, T. Lin, H. Bannazadeh, and A. Leon-Garcia, “Software-
Defined Infrastructure and the SAVI testbed,” in 9th International Con-
ference on Testbeds and Research Infrastructures for the Development
of Networks & Communities (TRIDENTCOM 2014), 2014.

[5] “Nagios,” available at http://www.nagios.org/, [Online; accessed 1-
Febuary-2015].

[6] M. L. Massie, B. N. Chun, and D. E. Culler, “The ganglia distributed
monitoring system: design, implementation, and experience,” Parallel
Computing, vol. 30, no. 7, pp. 817-840, 2004.

[77 M. Smit, B. Simmons, and M. Litoiu, “Distributed, application-level
monitoring for heterogeneous clouds using stream processing,” Future
Generation Computer Systems, vol. 29, no. 8, pp. 2103-2114, 2013.

[8] P. Sharma, S. Chatterjee, and D. Sharma, “CloudView: Enabling tenants
to monitor and control their cloud instantiations,” in Integrated Network
Management (IM 2013), 2013 IFIP/IEEE International Symposium on.
IEEE, 2013, pp. 443-449.

[9] “MONaaS,” available at https://wiki.openstack.org/wiki/MONaaS, [On-
line; accessed 1-Febuary-2015].
[10] J. Montes, A. Sanchez, B. Memishi, M. S. Pérez, and G. Antoniu,

“GMonE: A complete approach to cloud monitoring,” Future Genera-
tion Computer Systems, vol. 29, no. 8, pp. 2026-2040, 2013.

[11] C. C. Marquezan, D. Bruneo, F. Longo, F. Wessling, A. Metzger,
and A. Puliafito, “3-d cloud monitoring: Enabling effective cloud
infrastructure and application management,” in Network and Service
Management (CNSM), 2014 10th International Conference on. IEEE,
2014, pp. 55-63.

[12] C. Yu, C. Lumezanu, Y. Zhang, V. Singh, G. Jiang, and H. V.
Madhyastha, “Flowsense: monitoring network utilization with zero
measurement cost,” in Passive and Active Measurement. Springer,
2013, pp. 31-41.

[13] S. R. Chowdhury, M. F. Bari, R. Ahmed, and R. Boutaba, “Payless:
A low cost netowrk monitoring framework for software defined net-
works,” in IEEE/IFIP Network Operations and Management Symposium
(NOMS), 2014.

[14] N. L. van Adrichem, C. Doerr, and F. A. Kuipers, “OpenNetMon:
Network monitoring in openflow Software-Defined Networks.”

[15] M. Kutare, G. Eisenhauer, C. Wang, K. Schwan, V. Talwar, and M. Wolf,
“Monalytics: online monitoring and analytics for managing large scale

data centers,” in Proceedings of the 7th international conference on
Autonomic computing. ACM, 2010, pp. 141-150.

2015 IFIP/IEEE International Symposium on Integrated Network Management (IM2015): Short Paper 745

