
Self-Optimizing Autonomic Control of Geographically
Distributed Collaboration Applications

Bogdan Solomon
NCCT Lab, University of

Ottawa
161 Louis Pasteur

Ottawa, Ontario, Canada
bsolomon@ncct.uottawa.ca

Dan Ionescu
NCCT Lab, University of

Ottawa
161 Louis Pasteur

Ottawa, Ontario, Canada
dan@ncct.uottawa.ca

Cristian Gadea
NCCT Lab, University of

Ottawa
161 Louis Pasteur

Ottawa, Ontario, Canada
cris@ncct.uottawa.ca

Stejarel Veres
NCCT Lab, University of

Ottawa
161 Louis Pasteur

Ottawa, Ontario, Canada
sveres@ncct.uottawa.ca

Marin Litoiu
York University

Toronto, Ontario, Canada
mlitoiu@yorku.ca

ABSTRACT
In the past few years, cloud computing has become an inte-
gral technology both for the day to day running of corpora-
tions, as well as in everyday life as more services are offered
which use a backend cloud. At the same time online collabo-
ration tools are becoming more important as both businesses
and individuals need to share information and collaborate
with other entities. Previous work has presented an archi-
tecture for a collaboration online application which allows
users in different locations to share videos, images and doc-
uments while at the same time video chatting. The applica-
tion’s servers are deployed in a cloud environment which can
scale up and down based on demand. Furthermore, the de-
sign allows the application to be deployed on multiple clouds
which are deployed in different geographic locations. Previ-
ous work however did not introduce how the application’s
up and down scaling is to be achieved. In this paper the au-
tonomic system which manages the self-optimizing function
of the cloud is presented. The autonomic system itself is
a self-organizing system with a control model based on the
leaky-bucket theory often used in network congestion con-
trol. A testbed for the collaboration application is used in
order to gather performance metrics for the model.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed applications;
D.2.8 [Software Engineering]: Metrics

General Terms
Theory, Design, Measurement

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CAC ’13, August 05 - 09 2013, Miami, FL, USA
Copyright 2013 ACM 978-1-4503-2172-3/13/08 ...$15.00.

1. INTRODUCTION
Cloud computing has become an integral technology as

more and more services make use of the capability to both
use hardware resources as a service and to scale a system
from a small number of users to millions of users easily.
Companies can now make use of outside resources and sim-
ply rent the hardware as needed from cloud providers like
Amazon, Rackspace, and Microsoft. In the past, scaling an
application after release would take weeks as new servers
would need to be purchased, configured, tested and finally
set to production. With the advent of cloud computing, a
new image of a server can be created and be ready to be
used in seconds or minutes.

At the same time, the world has become more connected
with companies having offices all over the world and with
people wishing to communicate with people in far away
countries. Due to these reasons, collaboration tools have be-
come more important allowing people to communicate not
only by text but also audio/video chat while at the same
time share documents, images, videos and collaborate on
them. Previous work in [7] presented such a web based col-
laboration tool. The collaboration tool is cloud based mak-
ing use of a geographically distributed server architecture, in
which multiple clouds at different locations host instances of
the media server for the collaboration application. Clients
connect to one of the available clouds and can communi-
cate via the collaboration application with clients connected
to any other server in any cloud location. Within a cloud,
servers use a Group Membership Service (GMS) to com-
municate with each other such that servers can be dynami-
cally created/destroyed and the servers would join/leave the
group as needed. A second level of communication is used
through the addition of gateways which enable the commu-
nication between clouds. Through the use of these two lev-
els of communication the system can keep the proper state
across all the servers, no matter the location of the server.

The geographically distributed cloud based collaboration
system requires an autonomic system which would allow
the clouds to scale dynamically based on demand. Such
a control system has to be able to control the number of
servers in each cloud based not only on the local state of

each cloud but also on the global state of the entire group
of clouds. Such a control system is better achieved by using
principles from self-organizing systems which exhibit com-
plex behaviour through the communication between simple
components. Each of the servers has its own local control
loop and the cloud autonomic self-optimizing behaviour is
achieved from the communication between the control loops.
Furthermore, through the communication between clouds a
global self-optimizing policy can be achieved.

The control loop of each of the servers is based on the
leaky bucket model frequently used in network congestion
control as presented in [2] and [3]. While the work in [2] is
used as a starting point, the model is modified in order to
be better applied to the architecture and behaviour of the
media server used for the collaboration application.

The remainder of the paper is organized as follows. Sec-
tion 2 introduces the collaboration application which is con-
trolled by the autonomic system. Section 3 presents the
leaky bucket model used for the autonomic control of a
server. Section 4 introduces the self-organizing model through
which the autonomic computing behaviour is achieved, as
well as the controller design. Section 5 introduces a test
bed used to test the collaboration tool as well as the auto-
nomic control system. Section 6 presents some performance
data from the test bed. Finally, Section 7 reflects on the
contributions of this paper and proposes topics for future
research.

2. GEOGRAPHICALLY DISTRIBUTED COL-
LABORATION APPLICATION

In order to better understand the control system devel-
oped, the architecture of the controlled system is briefly pre-
sented in this section. The entire architecture is presented in
[6] and [7]. The collaboration application is a client-server
application in which clients connect to a server and upon
successful connection see a list of online contacts. Users can
then invite online contacts to join them in a collaboration
sessions - users can only be in one session at one point in
time. Once in the collaboration session, users can commu-
nicate via audio, video and text chat. At the same time, the
application has a shared section of the display window in
which the content loaded is synchronized across all users in
the same session. The content of this synchronized section
can be a video, an image, a document or a game.

This application was modified in order to allow the server
to be deployed in a cloud. One of the most important re-
quirements for the cloud deployment was that the cloud na-
ture of the system be hidden from the end user. As such,
end users can view the system as a single, very large server.
This design requirement led to the following changes to the
single server application.

2.1 Server-To-Server Communication
Since the cloud sizes are not static in order to scale up

and down based on demand, a very important ability for the
servers is to discover new servers when servers come online
and for servers to broadcast when they leave the cluster.
In order to achieve this goal, the cluster architecture uses
a Group Membership Service (GMS) [1] to create a group
which the servers can join and leave. The servers then use
the group created by the GMS system to communicate with
each other. Using a GMS for such communication instead of

an approach like broadcasting the messages in the network
ensures that multiple clusters can be co-located in the same
network and not interfere with each other’s inter-server com-
munication. In order to deal with group members crashing,
members periodically send a refresh message to update the
status of their group membership. If a long enough period
passes without a refresh from a group member, that member
is considered dead and removed from the group. If a group
member attempts to join a group with a name that does not
exist, then a group with that name is created.

2.2 Cloud-To-Cloud Communication Architec-
ture

While the in-cloud server-to-server communication uses
lists composed from the cloud’s servers, updated via GMS
status messages, in order to know where the server peers
are located inside the cloud, such an approach would be pro-
hibitive for out-of-cloud communications. At the same time,
servers inside the same cloud can know the host names and
IP addresses of their peers since the servers are on the same
network. In a geographically distributed cloud architecture,
servers from one cloud cannot know the host names or IP ad-
dresses of servers in other clouds. Even if the servers know
these values, the values cannot be used since the servers
can be on separate local area networks. Because of this, a
tradeoff has to be made between decreasing the number of
messages sent between clouds and the global system state
stored at each cloud. To achieve cloud-to-cloud communica-
tion, the architecture uses a gateway component placed in
each cloud. The gateway itself resides on a public IP ad-
dress. This approach is similar to the one used in [9] which
uses brokers to pass data between collaboration clients. The
gateway itself is a peer in the GMS group created for the
cloud, but instead of processing the messages received like
the servers do, the gateway will simply broadcast the nec-
essary messages received to the other clouds. In the case
of client-to-client messages, if the destination client is con-
nected to the local cloud - the gateway also stores a list of
clients connected locally - then the message is not sent to
other clouds. The gateway is also responsible for receiving
messages from other gateways, and broadcasting the mes-
sages within the cloud.

Note that more reliability can be added to the cloud com-
munication system by using multiple gateways per cloud.
Instead of having one gateway for all outward communica-
tions, each cloud can have one gateway for communications
with each of the other clouds, thus for N clouds, each of the
clouds would have N-1 gateways. This approach decreases
the stress put on each of the gateways, but requires more
public IPs to be used for each of the clouds.

3. SINGLE SERVER LEAKY BUCKET MODEL
In the development of any control system a very important

decision, and the decision upon which the correct execution
of the control system rests is the decision of what model to
use. Based on the model chosen for the controlled system,
the control law and measured inputs can be selected. In this
section, the background theory and changes to the model
chosen are presented.

As previously mentioned, the control of the system is
based on the leaky bucket model, which is usually used in
order to manage the queues of network routers and switches
in order to prevent overloading and is itself based on a fluid

Figure 1: Single-Server Queuing System

flow model [2]. In a fluid flow model, a router or other net-
work equipment is modeled as a single-server queuing system
with constant service rate, as in Figure 1, where u(t) is the
rate of packets arriving at the queue, x(t) is the state of the
queue represented by the number of packets in the queue
and v(t) is the rate at which packets are processed and re-
leased from the queue. This view of the system results in a
fluid flow model as follows:

ẋ = −v + u (1)

If the queue operates as a FIFO queue, then the model
can be expressed as follows:

ẋ = −r(x) + u (2)

where r(x) is the processing rate of the queue and can
be expressed mathematically as the ratio between the state
or load of the queue (x) and the residence time of packets
(θ(x)) as in equation 3.

r(x) =
x

θ(x)
(3)

As such, the steady state load of the queue depends on the
residence time of packets and the residence time of packets
could be, for example, linear as proposed in [2]:

θ(x) =
a+ x

µ
(4)

where a > 0, µ > 0. Assuming a constant rate of incoming
packets of λ, the steady state load x̄ becomes:

x̄ =
λ

µ− λ
(5)

The leaky bucket model is created on top of this fluid
flow model, in order to ensure that the network equipment
is not overwhelmed when large bursts of packets appear.
The control is performed by dropping packets once a certain
condition is met. The leaky bucket model is created by
adding a “token bucket” to the queue. The token bucket is
filled at a constant rate and whenever a packet is removed
from the queue, a packet is also removed from the token
bucket. At the same time, the service rate of the queue is
controlled by the amount of tokens in the token bucket. The
model of the system looks like Figure 2. The token bucket
is filled at a constant rate R > 0 and R < µ and the service
rate is modulated by y - the fill amount of the token bucket,
such that v = µ when the token bucket contains tokens and
v = R when the token bucket is almost empty.

While the above model can be used for the control of
a queue in networking equipment, a number of modifica-
tions have to be made to apply it to the collaboration appli-
cation previously presented. The collaboration application

Figure 2: Token Leaky Queuing System

provides a number of capabilities which are under Quality of
Service (QoS) considerations: text chat, synchronized view
and audio/video chat. In order to provide good QoS the sys-
tem should provide low latencies for the users. Among the
various capabilities, the most demanding, and the one which
requires the strictest latencies is the real-time audio/video
chat capability. The synchronized view is achieved via small
messages and requires few server resources. Similarly, com-
pared to audio/video chat, text chat requires few server re-
sources and text messages can also be delayed for short pe-
riods without perceived loss of user experience. As such,
this paper will focus on using the audio/video streaming ca-
pability as a proxy of how loaded the server is, in order to
autonomically manage the load of the servers in the cloud.

When a user starts sending audio/video data to the server
for the real-time audio/video chat, the server will take the
stream and rebroadcast it to all other users who are in the
same collaboration session. This behaviour can be modeled
similar to the previous fluid flow model, as the server will re-
ceive packets containing the streaming data and rebroadcast
them to the required clients. Since the application server
does not track the number of packets received in the var-
ious queues, a proxy for the number of packets has to be
used. For this purpose, either the bandwidth used or the
number of clients streaming to the server and the number
of streams going out from the server can be used. While
any audio/video stream will show burstiness depending on
changes in captured video data - still images will use less
bandwidth and packets than video data containing move-
ment - and audio data - silence will use less packets, possibly
even no packets depending on settings, than people talking -
averaged over an entire server’s streams this burstiness will
disappear. Because of this we can express the number of
packets received by the server as a function as follows:

u = nis ∗ pi (6)

or

u = bwin/psize (7)

where the packet rate u is defined either as the number of
incoming streams received by the server (nis) multiplied by
a constant (pi) which defines the average number of pack-
ets per stream per time unit, or as the bandwidth received
by the server (bwin) divided by a constant (psize) which de-
fines the average size of a packet. Due to the fact that the
server must broadcast the packets to multiple clients, the
rate at which packets are being processed can not be con-

sidered to be constant, like in the case of a router. As such,
the service rate of the server is not constant, but changes
periodically dependent on the number of stream receivers.
One stream could be broadcast to five receiving users, while
another stream is only broadcast to one receiving user and
the service rate of packets from the first stream is larger
than that of packets from the second stream. Similarly to
how the model deals with audio/video data burstiness, this
disparity is assumed to disappear when averaged across the
entire server, such that the residence time can be expressed
as follows:

θ(x) =
a+ x

nos ∗ pp (8)

or

θ(x) =
a+ x

bwout/psize ∗ ppinout
(9)

where the service rate is the number of outbound streams
(nos) multiplied by a constant which defines how much pro-
cessing each stream requires (pp) or the service rate is the
outgoing bandwidth (bwout) divided by a constant which de-
fines the average size of a packet (psize) and multiplied by
a constant defining how packets in and out are related in
terms of processing (ppinout).

As such the full continuous time model can be expressed
as follows, similar to the work in [2]:

ẋ = −nos ∗ pp ∗ x
1 + x

y

ε+ y
+ nis ∗ pi (10)

ẏ =

{
−nos ∗ pp ∗ x

1 + x

y

ε+ y
+R if 0 ≤ y ≤ σ

0 if y = σ

or

ẋ = − bwout/psize ∗ ppinout ∗ x
1 + x

y

ε+ y
+ bwin/psize

(11)

ẏ =

 − bwout/psize ∗ ppinout ∗ x
1 + x

y

ε+ y
+R if 0 ≤ y ≤ σ

0 if y = σ

where σ is the size of the token bucket, which starts full. In
this model y/(ε+y) is a modulation function with 0 < ε� 1.

The above model can now be used in order to manage the
audio/video streaming queue of a single server by relating
the number of packets coming in, to the state of the queue
and the number of packets coming out.

4. SELF-ORGANIZING MODEL
For clarity, in this section server refers to the actual Red5

servers being controlled, server controller refers to the self-
organizing controller which controls a single Red5 server,
load balancing subsystem refers to the a component inside a
cloud which balances client requests between the various ac-
tive servers in the cloud, cloud control subsystem refers to a
component inside a cloud which decides when to add/remove
servers and cloud controller refers to the actual cloud mech-
anism which adds/removes servers.

The previous section introduced the control model applied
to a single server’s audio/video queue in order to autonom-

ically manage the state of the queue similar to the control
of a router’s packet queue in order to offer better QoS to
the end users via lowered latencies. In the case of a router,
the control of the queue’s performance is achieved by sim-
ply dropping some packets when they arrive such that the
queue does not get filled too quickly and the processing rate
is maintained as desired. In the case of the collaboration
application described in this paper, the autonomic goal is
to manage the audio/video latency provided by the servers
by adding more servers to the cloud’s pool of active servers
whenever servers get overloaded. This means that when the
control model reaches a point where, in the case of a router
it would start dropping packets observed due to the fact that
the token bucket is close to empty, in the case of the collab-
oration application it adds servers to the active server pool.
Conversely, when the token bucket approaches full capacity,
servers are removed from the active cloud pool. The addi-
tion/removal of servers is achieved by adding self-organizing
capabilities to the cloud, similar to the work in [8].

Self-Organizing systems are systems which reach a desired
state without the use of any central authority or plan. In
order to reach a self-organizing state for the collaboration
cloud the server control loops exchange data with each other
as well as with the cloud control subsystem in order to de-
termine if a new server is required or if servers should be
stopped. The self-organizing control is achieved in four con-
trol decisions:

1. The first decision is done by the servers which reach a
state where they are overloaded based on their leaky
bucket model. These servers remove themselves from
the pool of servers accepting new client connections.

2. The second decision is taken by the cloud control sub-
system if the pool of servers accepting new client con-
nections becomes too small and the remaining servers’
token buckets are showing that the servers are soon
to be overloaded. This implies that the servers share
information regarding the state of the token bucket
themselves. In this case, the cloud control subsystem
adds new servers to the active pool of servers.

3. The third decision is done by any servers which is not
accepting new connections and whose token bucket are
showing that the servers are not overloaded anymore,
bu getting close to being full again. These servers add
themselves back to the pool of servers receiving client
connections.

4. The fourth decision is taken by the cloud control sub-
system if a certain number of servers in the cloud have
token buckets showing that the servers are underloaded
for a certain period of time. In this case, the cloud con-
trol subsystem chooses some servers and stops them,
freeing the underlying cloud resources used.

The above four decisions ensure first of all that no sin-
gle server will be overloaded by receiving too many requests
compared to its peers. Second of all, by using the state of the
token bucket to decide when to add/remove servers to/from
the cloud it can be ensured that the number of servers in
the cloud does not fluctuate sporadically and exhibit oscil-
lations.

The communication between self-organizing components
can be achieved by using a Group Membership Service (GMS)

system to broadcast messages among the control peers in or-
der to reach the control decisions, similar to how the servers
exchange messages. The control messages are either accept
new clients/reject new clients messages sent by the servers
to instruct the load balancing subsystem of their ability or
state messages informing the cloud control subsystem of the
modeled state of the token bucket.

4.1 Controller Design
The previously described equations, 10 and 11 represent

the state of the audio/video queue and the state of the leaky
token bucket as a function of the number of streams and
bandwidth used respectively. In order to develop a con-
troller, the equations have to be modified to a form which
can be interpreted by a computer. Also, the data which will
be measured from the underlying controlled system has to
be determined. This section presents the steps which are
taken by the controller in order to apply the model previ-
ously described. The controllers described in this section
are the self-organizing controller applied to a single server,
as well as the cloud control subsystem which adds/removes
servers to/from the cloud. The server controller executes
the following control iteration every 30 seconds.

1. Initialize at start the token bucket as being full. The
size of the token bucket which best represents the un-
derlying system is determined via performance mea-
surements of the system.

2. Retrieve measured data from the managed server. This
data includes the number of incoming streams, number
of outgoing streams, bandwidth received, bandwidth
sent as well as latency and CPU usage. The data re-
ceived from the server represents in the case of stream
numbers the current number of streams, in the case
of bandwidth the average bandwidth for the last 30
seconds across all server connections, in the case of la-
tency the latencies calculated for clients in the last 30
seconds. Latency measurements are obtained by ping-
ing the clients and computing the average across all
clients, and CPU usage is measured by retrieving the
system’s CPU usage.

3. Compute a new state for the leaky token bucket by
adding R tokens and removing a number of tokens as
defined by the equations 10 or 11 based on the previ-
ous state of the queue, the previous state of the token
bucket and either the number of outgoing streams or
sent bandwidth.

4. Compute a new state for the queue by adding packets
equivalent to either the incoming number of streams
or received bandwidth and removing packets based on
the previous state of the queue, the previous state of
the token bucket and either the number of outgoing
streams or sent bandwidth, similar to the calculations
for the new state of the token bucket.

5. Determine the state of the token bucket by compar-
ing it to predefined thresholds. If the token bucket
is above the upper threshold, increment a counter for
how many consecutive time periods have been above
the threshold. If it is bellow the lower threshold, incre-
ment a counter for how many consecutive time periods

have been bellow the threshold. If it is between the two
thresholds, reset both counters to 0.

6. If the upper counter has passed a threshold of how
many successive time periods can be above the thresh-
old, request that the server no longer accept new clients.

7. If the lower counter has passed a threshold of how
many successive time periods can be bellow the thresh-
old and the server is not accepting new clients, request
that the server start accepting new clients.

It should be noted that the number of successive periods
bellow the lower threshold before starting to receive new
clients should be lower than the number of successive periods
above the upper threshold. This is due to the fact that a
client which is not receiving new clients and which is being
underloaded is very unlikely to become overloaded. On the
other hand, a server which is overloaded can become very
easily underloaded as clients leave or stop streaming.

An extra control loop resides on top of the server control
loops - although by being a member in the GMS group it
could be seen as being a peer in the self-organizing system -
and performs two control actions:

1. Add/remove servers to/from the cloud by making re-
quests to the cloud controller. Upon reception of mes-
sages from the servers regarding the state of their to-
ken buckets the cloud control loop computes how many
servers are overloaded and based on a predefined thresh-
old adds new servers. Similarly, if the number of un-
derloaded servers passes a predefined threshold, servers
are removed from the active pool.

2. Talk to other cloud controllers to determine which
clouds new clients should be redirected too. This con-
trol sequence is also done in a self-organizing manner:

(a) Cloud controllers communicate with each other
and exchange information regarding number of
total servers, number of active servers and num-
ber of overloaded/underloaded servers.

(b) Upon start-up, clients ping all the clouds’ load
balancing subsystems to determine which cloud
to connect to.

(c) Each of the load balancing subsystems reply, but
with a delay dependent on the cloud controllers
inter-communication. As such, the cloud con-
trollers set a delay value in each of their respective
load balancers, based on the load of each cloud.

Through the combination of the delay set by the cloud
controller and ping time, clients connect to a cloud which
offers both good network connectivity and good load.

5. COLLABORATION APPLICATION TEST
BED

In order to gather data on how the collaboration servers
behave, as well as to test the control system a small test
bed was developed in which various loads were applied to a
cloud of media servers and the necessary data was measured
from the servers. All the servers are currently located in
the same location on the same LAN and VLANs are used
in order to separate servers into different logical networks.

This is done in order to be able to simulate multiple data
centers (clouds) and be able to simulate network load on the
connections between data centers. In the future, a second
test bed will be added in a second location with a similar
structure but different server capabilities, thus testing how
the autonomic control developed in this paper manages a
heterogeneous cloud. At the same time, this second test
bed will act as a public cloud, while the current test bed
will act as a private cloud. Each of the hardware servers
in the cluster run OpenStack [4]. On top of OpenStack,
each server runs Ubuntu Linux and the collaboration server.
The collaboration server is used for enabling communication
between clients and is implemented using the Red5 Media
Server [5].

Figure 3 shows the physical topology of the infrastruc-
ture, which was used to simulate various deployment sce-
narios and run tests on how the collaboration system be-
haves. The test bed uses five servers connected via a switch
to one of four routers with a fifth router providing outside
internet connection. The second switch connects the servers
to a management network. Figure 4 displays how routing
is done within the network and the various VLANs used to
create the separate clouds. The server names are cloud1
through cloud5, with cloud4 and cloud5 being in the same
VLAN, while cloud1, cloud2 and cloud3 are each in their
own VLAN. Cloud1 also acts as the cloud controller run-
ning all the various services necessary for a cloud like virtual
image storage, network management, and cloud computing
fabric controller. Each of the virtual machines was given
2GB RAM, 1 VCPU and 20GB hard drive storage. The
network connections are 100Mbps with some of the router
connections being 10Mbps. While such connection speeds
would be too low for a data center, it is fine for these tests
as the low speeds can be used to simulate overloaded internet
connections with low throughput.

A separate machine not shown in the diagrams is respon-
sible for simulating client requests. In order to test au-
dio/video streaming a prerecorded webcam video is streamed
whenever the client simulator decides to start streaming.
The stream which was used for testing was a 64x64 video
stream at 25 frames per second with a bit rate of 180Kbps.
The client simulator is written in Java and can simulate var-
ious client distributions by varying the amount of clients,
the number of clients in every session, the number of clients
streaming in each session and the time delay between mes-
sages being sent in a session. The simulator initially creates
a number of sessions and a number of clients in each session.
Each client is created with a given time to live. Periodically,
the session calculates how many clients should be streaming
in the session at that point in time. If more clients are re-
quired to stream than are currently streaming, the session
simulator instructs a number of clients to start streaming
also. If less clients are required to stream than are cur-
rently streaming, the session simulator instructs a number
of clients to stop streaming. If there is no change in the
number of clients needed to stream, then no change is made
in which clients are streaming. Whenever a client reaches its
time to live, the client is put to sleep and given a time after
which it should wake up and reactivate. When a client re-
activates it joins again the same session it was a member of,
before going to sleep. The amount of time clients are awake
and sleep is randomized thus allowing for the generation of
various session sizes over time.

Figure 3: Physical Topology

Figure 4: Logical Topology Routing

Table 1: Median and Mean CPU, Latencies for 1 Server, 1
Session, 1 Stream

Number
of

Users

Median
Lat.
(ms)

Mean
Lat.
(ms)

Median
CPU
(%)

Mean
CPU
(%)

Out
Streams

5 10.40 13.15 6.86 6.16 4
10 11.60 13.20 14.51 12.41 9
15 12.03 24.08 21.49 18.31 14
20 14.90 30.43 27.56 23.57 19
25 16.48 48.05 33.41 28.50 24
30 20.02 65.88 38.15 32.79 29
35 34.80 109.41 42.36 36.64 34
40 59.75 135.60 44.21 38.62 39

6. RESULTS
There are three variables which can be varied in order

to determine how they affect the measured data obtained
from the collaboration servers. For these tests one variable
was modified while all others were kept constant. The four
variables are the following:

1. Number of collaboration sessions in each server, varied
from one to three.

2. Number of clients in each session, varied in increments
of five from five to fourty. In some cases, the increases
in clients stopped before reaching the maximum due
to the 10Mbps network link becoming saturated.

3. Number of clients streaming per session, varied from
one to three.

The data is measured from all the servers every 30 seconds,
and is composed of: bandwidth received, bandwidth sent,
latency and CPU usage. Since the tests are run at different
moments in time, the timescale is normalized to the period
from when each test was started.

The expectations are that as the number of servers in-
creases for a given number of clients, sessions and streams
the bandwidth and latency will decrease proportionally. Sim-
ilarly, as the number of collaboration sessions increases, with
all other variables kept constant bandwidth and latency will
decrease as the 1:N proportion, where N is how many clients
receive the stream decreases. When the number of clients in
a session increases bandwidth and latency should increase
in a reverse fashion. Finally, when the number of stream-
ing clients increases bandwidth and latency should increase
similarly. For these tables Latency was abbreviated to Lat.

6.1 1 Server, 1 Session, 1 Stream Per Session
This test is used in order to provide a base in terms of the

performance characteristics of the application. The number
of clients was varied from 5 to 40, where the 10Mbps network
link was nearly saturated, in increments of 5 users. Table 1
shows the median and average latencies and CPU usage as
the number of users increases. This test shows that latency
and CPU usage are not directly correlated. Between 30, 35
and 40 users latencies start increasing substantially, however
CPU usage continues to grow at a steady rate and even slows
down between the 35 and 40 user tests.

Table 2: Median and Mean CPU, Latencies for 1 Server, 1
Session, 2 Streams

Number
of

Users

Median
Lat.
(ms)

Mean
Lat.
(ms)

Median
CPU
(%)

Mean
CPU
(%)

Out
Streams

5 10.20 11.92 13.56 11.33 8
10 12.79 21.64 22.95 19.12 18
15 20.03 64.12 31.87 27.54 28
20 33.95 95.57 40.15 31.35 38
25 277.84 274.80 35.31 32.28 48

Table 3: Median and Mean CPU, Latencies for 1 Server, 1
Session, 3 Streams

Number
of

Users

Median
Lat.
(ms)

Mean
Lat.
(ms)

Median
CPU
(%)

Mean
CPU
(%)

Out
Streams

5 10.40 19.77 19.86 16.44 12
10 14.55 35.68 34.44 28.76 27
15 66.53 120.20 38.82 33.46 42

6.2 1 Server, 1 Session, 2 Stream Per Session
The results in table 2 show the mean and median latencies

and CPU usage for 2 audio/video streams in one session.
The number of clients varied from 5 to 25, in increments of 5,
due to the fact that at 25 the 10Mbps link is saturated. For
each of the various numbers of clients the number of outgoing
streams is double that of 1 stream per session. Looking at
latency values it can be noticed that for a similar number of
outgoing streams, latency mean and median are very close,
while CPU usage varies by quite a bit. For example, the 30
users test case for 1 stream has latency mean: 65.88 ms and
median: 20.02 ms, while the 15 users test case for 2 streams
has latency mean: 64.12 ms and median: 20.03 ms. For the
same test comparison CPU usage is quite different between
the two tests.

6.3 1 Server, 1 Session, 3 Stream Per Session
The results for 3 streams in one session from table 3 show

that the number of outgoing streams is not the only factor
in observed latencies. 27 outgoing streams, with only 10
users in a session (3 streams, each going to 9 users) exhibits
much lower latency values - mean: 35.68 ms and median:
14.55 than 28 outgoing streams, with 15 users in a session
(2 streams, each going to 14 users) - mean: 64.12 ms and
median: 20.03 ms.

6.4 1 Server, 2 Sessions, 1 Stream Per Session
The test case with 2 sessions and 1 stream per session,

proves that latency is a function of the number of users and
number of outgoing streams. 20 users per session (resulting
in 40 total users) with 2 incoming streams and 38 outgoing
streams shows higher latency values - mean: 126.36 ms and
median: 63.51 ms than 38 outgoing streams, with 20 total
users (2 streams, each going to 19 users) - mean: 95.57 ms
and median: 33.95 ms.

6.5 Packet Sizes
Using the data obtained from the tests an average value for

pi can be determined. Taking packet distribution boundaries
(64, 128, 256, etc.) from Figure 5 as the sizes of packets, the

Table 4: Median and Mean CPU, Latencies for 1 Server, 2
Sessions, 1 Stream Per Session

Number
of

Users

Median
Lat.
(ms)

Mean
Lat.
(ms)

Median
CPU
(%)

Mean
CPU
(%)

Out
Streams

5 10.95 13.04 13.79 11.61 8
10 12.75 31.38 23.25 19.82 18
15 20.12 60.83 32.39 28.00 28
20 63.51 126.36 41.10 35.99 38
25 365.65 341.45 35.19 32.16 48

Figure 5: Server Packet Sizes - Operating System

average packet size and thus pi can be determined to be
equal to 482 bytes. The other model parameter pp can be
approximated from the previous latency measurements as a
function of number of users, number of streams and outgoing
streams.

7. CONCLUSIONS
This paper introduced a novel approach for the autonomic

control of a cloud based application responsible for providing
user collaboration tools, which uses principles from network
control and combines them with self-organizing mechanisms
in order to ensure the self-optimizing function for the cloud
due to changing demand. The paper also presented perfor-
mance results obtained from the cloud, which were used to
determine some parameters of the model.

Future work will focus on providing a full implementation
of the autonomic system described in this paper as well as
using various load simulations in order to better determine
the model parameters and also test the behavior of the au-
tonomic system and determine how fast the system adapts
to changes and how well the cloud resources are used. The
system will also be tested with higher speed networks and
will simulate varying network latencies.

8. REFERENCES
[1] K. P. Birman. The process group approach to reliable

distributed computing. Commun. ACM, 36:37–53,
December 1993.

[2] V. Guffens and G. Bastin. Optimal adaptive feedback
control of a network buffer. In American Control

Conference, 2005. Proceedings of the 2005, volume 3,
pages 1835–1840, June 2005.

[3] V. Guffens, G. Bastin, and H. Mounier. Using token
leaky buckets for congestion feedback control in packet
switched networks with guaranteed boundedness of
buffer queues. In Proceedings of European Control
Conference (ECC), 2003.

[4] OpenStack. OpenStack Cloud Software.
http://www.openstack.org/. [Accessed: January
2013].

[5] Red5. Red5 Media Server. http://www.red5.org/.
[Accessed: January 2013].

[6] B. Solomon, D. Ionescu, C. Gadea, and M. Litoiu.
Migrating Legacy Applications: Challenges in Service
Oriented Architecture and Cloud Computing
Environments, chapter Geographically Distributed
Cloud-Based Collaborative Application. IGI Global,
2013.

[7] B. Solomon, D. Ionescu, C. Gadea, S. Veres, M. Litoiu,
and J. Ng. Distributed clouds for collaborative
applications. In Collaboration Technologies and Systems
(CTS), 2012 International Conference on, pages 218
–225, may 2012.

[8] B. Solomon, D. Ionescu, M. Litoiu, and G. Iszlai.
Self-organizing autonomic computing systems. In
Logistics and Industrial Informatics (LINDI), 2011 3rd
IEEE International Symposium on, pages 99 –104, aug.
2011.

[9] A. Uyar and G. Fox. Investigating the performance of
audio/video service architecture. II. Broker network.
International Symposium on Collaborative Technologies
and Systems, 0:128–135, 2005.

