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Abstract 
 

In cloud computing, an “edge cloud” may be in-
troduced close to some of the end users, to give 
faster service for very demanding applications. 
The transactions that require heavy processing 
capacity and longer processing times are seen as 
more suitable to be carried out at the “core” cloud. 
Parts in the core and edge may then have to com-
municate, introducing associated network laten-
cies. An application should be deployed across 
edge and core with the aim to reduce the overall 
effect of network latencies, in order to meet end 
user response time goals. In this paper, we use a 
Layered Queueing Network performance model 
to explore the impact of network latency and 
some possible deployment choices on the respon-
siveness of an application called HCAT (Home 
Care Aides Technology). The evaluations show 
that the use of the edge cloud may cause perfor-
mance degradation, rather than gain, for some 
kinds of applications. 

1 Introduction 
Cloud computing [1] refers to the applications and 
services that run on a distributed network using 
virtualized resources and accessed by common 
Internet protocols and networking standards. The 
distinguishing features of cloud computing in-
clude the notion of effectively limitless virtual 
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resources and the transparent usage of physical 
systems by the users. 

Cloud computing has gained substantial pop-
ularity in the computer industry due to its signifi-
cant cost advantages. Cloud computing has made 
it possible to use computing resources (both 
hardware and software) as a utility. Cloud service 
providers offer web service interfaces to obtain 
and configure computing capacity instantly with 
minimal friction. But there are some characteris-
tics of cloud computing which are holding it back. 
These include issues with transaction control, 
security and regulatory compliance and network 
latency.  

In order to reduce the latency of accessing 
highly demanding, dynamic applications, the no-
tion of an extended cloud has been introduced [2]. 
The extended cloud refers to the use of caching 
data on one or more edge clouds to improve the 
scalability and efficiency of applications deployed 
on the core cloud.  The underlying philosophy of 
the edge cloud is to move data and possibly some 
parts of the application closer to the end-user of 
the system. Figure 1 shows the extended cloud 
architecture with one core cloud and one or more 
edge clouds. The clients use handheld devices to 
access the edge cloud which is located possibly in 
the same area or city. The edge has the advantage 
of low latency, but it has limitations on computing 
and storage capacity. Through a powerful back-
bone or dedicated high-speed network, the edge 
can exchange information with the core cloud. 
Due to its distant location, any request made by 
the user takes more time to access the core cloud, 
compared to the time it takes to access the edge.
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Figure 1: Extended cloud architecture (taken from [2]) 

Researchers who work on edge clouds mostly 
concentrate on developing different algorithms for 
edge caching that maintains data consistency be-
tween different clouds [3][4][5], partitioning data 
between edge and cloud [6], minimizing data ac-
cessing time for content delivery networks [7], etc.  
However, we have not found any comparative 
study on the end-user response times for various 
combinations of edge-cloud application deploy-
ments. 

Usually the researchers simply assume that 
the use of an edge cloud would improve the over-
all user-experience by reducing end-user response 
times. Although it is true that the edge cloud is 
located nearer to the users compared to the core 
cloud, still its use may reduce the system perfor-
mance in some cases. This is due to the fact that 
the edge cannot to do all the processing and stor-
age locally and it must also access the core. This 
edge to core communication can add extra latency 
to the overall user experience, which may be sig-
nificant depending on the traffic patterns and the 
deployment of the application.  

In this paper we address this issue of network 
latency and demonstrate cases where the use of 
edge cloud may either increase or decrease system 
response time. To illustrate this we use a distrib-
uted application called HCAT (Home Care Aides 
Technology) [10][11], which includes both 
streaming video and transaction processing capa-

bilities. Users of the system can make service 
requests through their handheld devices (e.g., mo-
bile phone) or sometime through computers, and 
the requests may need to go through both edge 
and core clouds. We show the impact of various 
deployments, data partitioning and network laten-
cies on the system performance. We find out that 
the impacts of deployment changes are not always 
as we expect them to be. 

The performance modeling technique that we 
use in this paper is called Layered Queuing Net-
works [8][9], an extended queuing model which 
reflects software structure and interprocess com-
munication, and the effects of resources in layered 
components.  

The rest of the paper is organized as follows. 
In section 2 we describe the HCAT software, in 
section 3 we give a brief description of the Lay-
ered Queuing Network (LQN) model, in section 4 
we discuss the main issues addressed in this paper. 
An LQN performance model for the HCAT soft-
ware is described in section 5 and the results of 
experiments are discussed in section 6. The paper 
concludes by briefly summarizing its contribu-
tions, its limitations and possible future exten-
sions.        
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2 HCAT Model Description 

HCAT (Home Care Aides Technology) [10][11] 
is a distributed application to help health care pro-
fessionals working in physically dispersed loca-
tions and their patients or clients. HCAT supports 
scheduling of services and video contacts, and 
storage and retrieval of client-related data. In an 
online video-conference, patients and healthcare 
professionals from different cities or countries can 
communicate with each other, each of them ac-
cessing the system through their nearest edge 
cloud. 

2.1 Functionality Description 
The description of HCAT used here represents a 
hypothetical distributed architecture, based on 
preliminary descriptions of usage scenarios. The 
naming of services and modules were created for 
the performance study, and has not been synchro-
nized with the actual software, whose develop-
ment is being completed. The HCAT system 
model shown here has four main services: 
1. Home Care Information Management 

Service, which manages three kinds of in-
formation : 

a. Clients and their care plans 
b. Home Care Aides (HCAs), their specialties 

and their availability. HCAs include every 
kind of health care professional. 

c. Current schedule of HCA visits to clients. 

A HCA using a mobile device can view and man-
age his/her and clients’ information. For example, 
he can view his appointments, update his availa-
bility, and after reviewing required documents he 
can update clients’ care plan.  

2. Scheduling Service: This service suggests 
when and where the HCA should go to see 
patients. This might be computationally in-
tensive depending on the complexity of the 
availability of the HCAs and clients.  

3. Synchronous Collaboration Service: Cli-
ents and HCAs may communicate with each 
other via video conference. The video confer-
ence is initiated by the head-nurse at client’s 
location, preferably at his home. Different 

specialist doctors across different cities and 
provinces may participate in a video confer-
ence.  The HCAs will be able to take notes 
and annotate the video in real-time. Video-
conferences are archived for record-keeping 
and later-viewing. The video, annotations and 
summary of the video-conference becomes 
part of the patient record. 

4. Central Analysis Service: The HCAT ad-
ministrators use this service to do manage 
and monitor clients and HCAs. This include 
analyzing and managing clients home care 
plans, analyzing performances of HCAs and 
support other administrative functionalities in 
general. 

 A high-level functional architecture of the 
above HCAT system is shown in Figure 2. 

2.2 Deployment Description 
The services described in the previous subsection 
might be deployed either in edge or in core or in 
both edge and core. Depending on the workload 
of the services, they can be migrated between 
edge and core. Nevertheless, these services have 
default choices of deployment due to their nature 
of work.      
 
Base-Case Edge deployment: An instance of the 
HCAT application that contains the home care 
information management service, scheduling ser-
vice and synchronous collaboration service is as-
sumed to be deployed at the edge. For any edge 
cloud, this part of the HCAT application will con-
tain only the data related to the clients located 
near to it. 

It should be noted that the number of edge 
clouds can grow dynamically as hospitals and 
clients at new locations can start to join the 
HCAT framework. Each edge registers with the 
core and some of its data is archived at the core in 
a common format.  

 
Base-Case Core deployment: It is assumed that 
the central analysis service is deployed at the core. 
It is accessed by the system administrators who 
use computationally heavy analytical software for 
performance evaluation of HCAs and plan man-
agement of the clients. 
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Figure 2: High-level functionality architecture of HCAT 

 The other three services (i.e., home care in-
formation management service, scheduling ser-
vice and synchronous collaboration service) are 
also deployed between the edge and the core. 
Some of the edge queries of these services are 
forwarded to the core for processing and storing. 
Heavy computations and data storing of these 
services take place at the core. 

The deployment description above implies 
that there are data which are contained only by the 
edge and not by the core at a given time. However, 
these data would be periodically pushed to the 
core for archiving and they would be accessible to 
the central analysis service.     

In Figure 3 the base-case deployment of the 
HCAT application is shown. All four services are 
deployed at the core, but the edge has only three 
services as it excludes the central analysis service. 

3 Layered Queuing          
Network (LQN) 

The performance models in this paper use 
the Layered Queuing Network (LQN) tech-
nique [8][9]. The LQN models are capable to rep-

resent the software components and their deploy-
ment, to capture inter-component communications, 
and to analyze resource interactions between lay-
ers of the application. 

Figure 4 shows a generic layered web ser-
vice application as a simple example. The main 
players of LQN are tasks (representing software 
processes), which are shown as rectangles, with 
two or more parts. The rightmost part defines the 
task itself (its name and its thread-pool multiplici-
ty, if greater than 1); the other rectangle parts rep-
resent the task operations, which are called entries, 
and are labeled with the host (CPU) demand for 
one invocation of the entry. Each task has a host 
processor (drawn as an oval). A call from one 
entry to another is represented by an arrow la-
beled with the number of calls. Every task and 
host is a queuing server, so requests to an entry 
first go into the queue for the task owning the 
entry, and are served when a task thread becomes 
available. An infinite server provides a pure time 
delay (without any waiting for the server). It is 
modeled as an infinite task running on an infinite 
host. Infinite servers are used in this work to rep-
resent network latencies. 

4 



  

 
Figure 3: HCAT deployment architecture 

 Figure 4 shows four hosts: ClientP, InternetP, 
WebServerP and DbServerP, and four tasks: User, 
Latency, WebServer and DbServer. 100 Users each 
having 5 minutes think time between requests are 
modeled using 100 source tasks running on 100 repli-
cated hosts (UserP). Network latency is modeled by 
the infinite threaded Latency task running on an infi-
nitely replicated host InternetP. This task has an entry 
for each type of request carried over the network, each 
having a pure delay (Z) equal to the network latency 
of 100 milliseconds.  

 

 

Figure 4: An example LQN model of a generic two-
tier web application 

The application has two layers defined by the 
WebServer and DbServer tasks, providing two ser-

vices simply called Op1 and Op2. Each service has an 
entry at each layer, with is appropriate host demand. 
The maximum thread pool size is 200 for the Web-
Server task and 150 for the DbServer task. The entry 
webOp1 calls dbOp1 twice, and webOp2 calls dbOp2 
four times. 

4 Issues to be Addressed 

This paper addresses three issues for HCAT:  
1. The impact of network latency on performance: 
When an application is deployed across multiple 
clouds and user queries need to travel through those 
clouds, the communication that takes place between 
the clouds can cause extra latency. In this paper we see 
the impact of this extra communication by varying the 
network latency between edge and core clouds. We 
also see the effect of latency on the other links, i.e., 
between user and edge, and between user and core. 
2. The impact of different deployments:  We start 
examining the system with a default deployment in 
which data and computations are split between edge 
and cloud. We also examine the system performance 
at extreme cases in which the whole application is 
deployed solely either at edge or at core cloud. 
3. The impact of different data partitioning: In 
many distributed applications the lack of data locality 
is one of the major reasons for bad performance. In 
this paper we vary the number of core data accesses 
done from the edge and examine their behavior. We 
also examine whether moving data from edge to core 
gives any substantial performance benefit. 
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5 Performance Model 

To develop a compact performance model, we 
consider the functional architecture of HCAT, and 
based on its usage profile we aggregate different kinds 
of requests to simplify the model. The resulting mod-
ules are represented as LQN tasks and are deployed in 
the mobile terminal, edge cloud and core cloud.  

5.1 From Functional Model to   
Performance Model 

Given the four services described in Section 2.1, 
the usage profile [10][11] of HCAT identifies the im-
portant types of user requests to be analyzed for per-
formance analysis. From the usage profile it seems 
probable that the central analysis service may have a 
substantial workload and forms one operation class 
(i.e., Central analysis service transactions); the video 
streaming for conferencing is distinctive, potentially 
heavy and time critical so it forms a second operation 
class (i.e., Conference video streaming) . There is an-
other video streaming operation to view a video that 
has been stored, which will be treated as a separate 
third class (i.e., Video retrieval streaming) because it 
has a different traffic pattern. The remaining services 
have been lumped together as a mixture of request-
reply transactions (i.e., Transaction handling), apart 
from the analysis operations. 

This gives four classes of requests in the perfor-
mance model. The flows of requests and data associat-

ed with these traffics are illustrated in Figure 5. The 
thicknesses of the lines give estimated volume of data 
flow among user and clouds.  

5.2 LQN Model Elements 
Different combinations of LQN tasks are used to rep-
resent the four classes of requests (See Figure 6). 
• Transaction handling class is modeled using a 

front-end task HandleXact, supported by a back-
end DataAnalysis task. 

•  Central analysis service transactions are also 
handled by the DataAnalaysis task but without 
going through the HandleXact task.  

• Conference video steaming is modeled by the 
AVInOutStream task, which receives a video 
stream from one mobile and redirects it to a set of 
$nVC-1 other mobiles ($nVC = average number 
of participants in a video conference). 

• Video retrieval streaming (for review of archived 
videos) is modeled by the task AVOutStream task 
which retrieves a video file from storage and 
sends it to one mobile that receives it via the 
GetVideo task. Video archiving and retrieval was 
added to this model of HCAT as a possibly inter-
esting consequence of having videos available for 
review. 
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Figure 5: Information flow for the four classes of operations, indicated by shadings 

6 



Each mobile device has an interface task MobileApp 
which accepts transaction requests from the user and 
triggers system operations, a task Camera to capture 
video frames in the mobile and send them to 
AVInOutStream, and a task VideoViewer to receive 
and display a video stream. Traffic generated due to 
the video conference service goes from the source 
mobile to all other mobiles via a conference server, 
and the video files are also archived. 

All tasks in the model can be replicated. It is as-
sumed that each video stream is handled by a dedicat-
ed concurrent task, even within the mobile (thus, a 
conference with four participants would have four 
active video streaming tasks, one to send the image 
from that mobile, and three to receive streams from 
other mobiles). 
 The transaction stream in the usage profile in-
cludes transactions to set up video conferences, re-
trieve videos, and to do small archive retrievals, as 
well as scheduling and care-support transactions. Ad-
ditional tasks are proposed to support edge/core opera-
tions: 
• A video cache task VCache in the edge to capture 

conference videos for archiving, and to store re-
trieved videos while they are being viewed. 

• DataAnalysis task is split among edge and core 
and two different tasks DataAnalysisE and 
DataAnalysisC are made. Both of these 
DataAnalysis tasks have their local storages for 
storing and retrieving data. These local storages 
are called DataStorageE and DataStorageC for 
edge and cloud respectively.  

• To represent network latencies we have think 
times, between a pair of communicating entries 
(which are not shown for clarity in Figure 6). For 
mobile to edge latency, this think time is repre-
sented by the variable $me, for core to edge laten-
cy by $ce, and for mobile to core by $mc. 

• There is one more task called Clock in the LQN 
model. This is a timing task to control the rate of 
operations in the video streams, otherwise the de-
fault model semantics would pull the frames out 
as fast as possible.  

5.3 Model Description 
The task mobileApp represents the HCAT appli-

cation running on the mobile device. Through the in-
teract entry, the mobile makes requests which are 
grouped into four classes. Two of these classes are 
transaction classes and the other two are video classes. 
The transaction classes include requests for central 

analysis transactions and requests for other transaction 
operations. On the other hand, the two video classes 
include requests for capturing / sending / receiving 
video in a conference, and requests for receiving an 
archived video.  

The parameters of the model are entirely hypo-
thetical, but have been chosen to represent potentially 
possible values. This is consistent with the purpose of 
the analysis, to identify possible problems and the 
situations in which they might arise. 

The assumed usage of the four services was 
modeled over an average interval of 10 minutes, mak-
ing service requests to:  
• Home care information management and schedul-

ing services, lumped together as Transaction han-
dling, 1 transaction on average; 

• Central analysis service, .01 request (average), or 
about one per day over all users; 

• Synchronous-collaboration service (video confer-
ence service), 0.16 requests (average), or about 
one per hour; 

• Video retrieval, 0.08 requests (average), or about 
one per two hours. 
 

 Central transaction analysis requests go to the 
doAnalysisC entry in the Core, where its host demand 
is given by the variable $doBA (do big analysis) set to 
30,000 ms (i.e., 5 minutes). This is intended to repre-
sent something like a data-mining operation, and it 
causes a large number of accesses to the core data-
base’s getXactDataCC entry. This large number of 
accesses is represented by the variable $nBDA (num-
ber of big data accesses), set to 10,000. The host de-
mand of getXactDataCC is represented using the 
variable $hXD (handle transaction data) which is set to 
200 ms. Transaction handling requests go from mobile 
to edge and are handled by the HandleXact task’s 
acceptXact entry with host demand $hX (handle trans-
action) which is set to a small value (10 ms), as this 
represents a small transaction. 

If the request received by acceptXact is only a 
store request to the core then the access to StoreXact 
entry is needed with probability 0.2. The service de-
mand of this entry is $hXD (storing transaction data = 
200 ms). On the other hand, acceptXact can receive 
requests for data analysis, and a fraction 0.6 of these 
requests are completely processed locally by 
doAllAnalysis (service demand $doSA = 100 ms) ac-
cessing local database getXactDataE (service demand 
$hXD = 200 ms) twice for each request.  
 A fraction 0.2 of the requests coming from 
acceptXact go to doAnalysisE are also completely pro-
cessed at the edge but they require core data access.  
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Figure 6: LQN model of the HCAT System. Parameters such as $hXD are defined in the text.

Requests for home care management service are ex-
amples of such services.Each request coming to 
doAnalysisE requires 10 accesses to getXactDataE and 
$nSDA (no. of small data analysis) accesses to core’s 
getXactDataEC entry.  

The default value of $nSDA is 200. This value is 
varied in the experiments to determine the impact of 
fetching different volumes of data from core to edge.   
 The video handling model is based on some as-
sumptions. A video conference is assumed to be 5 
minutes long on average, with a frame rate of 24 
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frames/s, resulting in a total of $nvf = 7200 frames in 
5 minutes. This gives a frame interval of about 42 ms.  
 Initially a video is captured by the camera of the 
mobile, represented by the entry captureStream with a 
total service demand (over the whole 5 minutes) of 
$captureExec and an accumulated interframe delay of 
Z=$captureThink. The values of $captureExec is set to 
10 ms/frame, or 72000 ms. From caputureStream, 
$nvf frames are forwarded to  viewInOutFrame (ser-
vice demand $hInOut = ($nVC - 1)*$hvf, where $nVC 
is the number of conference participants). These re-
quests are further forwarded to the viewer cameras 
viewFrame. In the experiments, we assume that 
though many conferences can take place concurrently, 
but in a single video conference only 3 mobiles partic-
ipate on average, therefore $nVC = 3. Also, from 
captureStream one request is forwarded to store the 
video at the core’s persistent storage via edge’s 
archiveVideo entry (service demand handling video 
file $hvF = 12,000 ms). 
 A mobile can either retrieve stored video or view 
an ongoing conference. A stored video is retrieved by 
downloading it as a large file (possibly in .wmv or .avi 
format) In order to download the video file, a request 
is sent to the edge’s retrieveVideoFile entry (service 
demand hX that we used previously). This entry makes 
request to retrieve the file from cache via the 
getFileIntoCache entry (service demand $hVF intro-
duced previously). The file is brought into cache from 
core using the getVideoFile entry.  

In case of a video viewed by the mobile, it has to 
be viewed frame by frame. A 5 minute video frame 
has $nvf (7200) amount of frames, each having a dura-
tion of $dvf (duration of video frame = 42 ms). These 
frames are forwarded from Clock to the edge’s stream 
controller (i.e., AVoutStream task) for processing; 
handling each of these video frames require $hvf (10 
ms) amount of processing time. This framing mecha-
nism is represented in the model using the entries 
getVideo, sendFrame and viewOutFrame.  If the video 
is to be viewed by mobile, then it has to be fetched by 
the stream controller from cache and needs to be for-
warded to mobile’s  VideoViewer task. In the LQN 
model, the view operation is carried out by mobile’s 
viewFrame entry.    

The base-case number of users was set at 150, 
and then varied in the experiments to test the system 
under different workloads. A compressed 5 minute 
long video is assumed to be 600 Mb in size and is pro-
cessed both at the edge and at the core at a rate of 
10Mbps. 

We use think time parameters to represent net-
work latency between every pair of communicating 
tasks that are not located in the same cloud. There are 
three variables: for mobile to edge it is $me = 50 ms, 
mobile to core $mc = 200 ms, edge to core $ec = 50 

ms. These values were varied during the experiments 
to test the system under different latencies.  

5.4 Default Deployment               
Description 

The following deployment is taken as the default de-
ployment: 
• HandleXact on the edge 
• AVInOutStream and AVOutStream on the edge 
• VCache on the edge 
• DataAnalysis partly on the edge and partly on the 

core  
• DataStorage partly on the edge and mostly on the 

core. 
 The deployed LQN model of HCAT is shown 
in Figure 6.  During the experiments, the deployment 
is varied to see the effect of different task migrations.  

6 Experimental Results 
A number of experiments were performed with the 
model. We have varied the number of mobiles in the 
system in order to find out the system saturation point. 
We have also observed the impact on system perfor-
mance of different deployments, of network latency 
change, of change of number of requests forwarded 
from edge to core and of moving data between edge to 
core.    

6.1 Point of Saturation 
For any system, one of the most important perfor-
mance information is to know the maximum number 
of users a system can support before getting saturated. 
Therefore, the model was solved with different num-
bers of mobiles to find its saturation point.  
 Figure 7 and Table 1 give results that show the 
effect of increasing the number  users (i.e., mobiles) in 
the system. There are 10 edge and 10 core processors 
in the system, and the core is under-utilized. 

Table 1: Performance results for different no. of mo-
biles 

#Mo-
bile 

UeP UcP RacptX 
[ms] 

RgetVid 
[ms] 

Rsys 
[ms] 

50 2.95 0.02 10190 24437 34406 
100 5.91 0.04 10194 25380 34561 
150 8.85 0.07 10238 31592 35599 
200 10 0.08 12575 670842 140219 
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Figure 7: Utilization and Response time for different 
no. of mobiles (See Table 1 for data) 

 
Under the base-case deployment, a larger amount of 
processing is done in the edge cloud, and only a few 
heavy processing and data storage requests are for-
warded to the core cloud. As a result, all the edge pro-
cessors become saturated at 170 users, but the core 
processors are utilized only about 8%. This is with 
only one edge cloud; as the number of edge clouds 
increase, more requests would come to the core cloud 
and the core utilization would increase. 

Although we have four classes of traffic, only the 
response times for the most important two are shown 
in the graphs. For instance, the number of requests 
directly going from mobile to core are very few (prob-
ability 0.01), so their response time is not shown, as 
they have little impact on the system performance. The 
response time of the acceptXaction class (R_acceptX) 
shown because it sends a large number of request to 
both the edge and the core, and their impact on the 
system response time is considerable.  

The other two classes of traffic deal with video 
conferencing, and since both of them have similar load 
and pattern only one has its response time shown, for 
getting an archived video file (R_getVideo). The other 
response time shown in the figure is the overall aver-
age system response time (R_System), which is affect-
ed by both R_acceptX and R_getVideo. 

From Figure 7 we can see that, until the number 
of mobiles reaches 160, the response times R_acceptX, 
R_getVideo and R_System do not change much. Ini-
tially the video data do not cause much congestion, 
and therefore R_System is only slightly larger than 
R_Video. However, the system is nearly saturated at 
160 mobiles, so at this point the video files contribute 
significantly to the congestion, so the response time 

R_getVideo becomes greater than R_System. The sys-
tem is completely saturated at 170 mobiles, so both 
R_getVideo and R_System continues to increase sharp-
ly from this point. 

6.2 Different Deployments 
Now we see the impact of one base-case and two 

extreme cases of deployment. In the base case HCAT 
is deployed both at edge and core as described in Sec-
tion 5.4. We call this a Split deployment. The two ex-
treme cases use only one cloud instead of two. AllCore 
refers to the case where HCAT is completely deployed 
at the core cloud, and AllEdge to the case where 
HCAT is completely deployed at the edge cloud.  

Table 2: Response times (in ms) for video file retrieval 
for 3 different deployments 

#Mo-
bile 

AllEdge 
R_getVideo 

Split 
R_getVideo 

AllCore 
R_getVideo 

50 24,389.2 24,437.5 28,360 
100 25,369.3 25,380.6 33,136.6 
150 31,242.9 31,592.2 43,192.6 
200 675,963 670,842 751,508 
 
Figure 8 and Table 2 show that the AllEdge deploy-
ment usually gives the best performance, which is es-
sentially due to the closeness of the edge to the users. 
Moreover, both the AllEdge and Split deployments are 
faster than AllCore deployment. The reason for this is 
the longer network latency between mobile and core 
(200 ms).  

 
Figure 8: Comparing video retrieval times for 3 differ-
ent deployments 

We can also see that before saturation, the response 
time for AllEdge deployment is only slightly less than 
that of Split deployment. However, as the number of 
mobile phones crosses the saturation point, the re-
sponse time of the AllEdge deployment becomes larg-
er than that for the Split deployment. This is due to the 
edge saturation in the Split deployment for over 160 
mobiles, so forwarding some of the traffic to the core 
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(which is under-utilized) gives a somewhat lower sys-
tem response time. 

 The effect of deployment on the acceptXaction 
class is shown in Figure 9 and Table 3. AllEdge de-
ployment outperforms the  AllCore  deployment. This 
is  expected  due to  the longer latency (i.e., 200 ms) 
between mobile to core compared to the shorter laten-
cy (i.e., 50 ms) between mobile to edge. 
 
Table 3: Transaction response times (in ms) for 3 dif-
ferent deployments 
#Mo-
bile 

AllEdge 
R_acceptX 

Split 
R_acceptX 

AllCore 
R_acceptX 

50 8180.01 10190 8330.01 
100 8184.9 10194.6 8334.84 
150 8233.97 10238.7 8382.43 
200 10586.2 12575.6 10638.1 
 

 
Figure 9: Comparing R_acceptX for 3 different de-
ployments 

Contrary to a reasonable expectation, the Split de-
ployment gives the worst response time of the three 
deployments. Investigation in the result file showed 
that the cause is by the large volume of communica-
tions between the edge and core in the Split case. The 
conclusion is that for a system partitioned between 
multiple clouds, the aim should be to reduce the vol-
ume of communication between the edge and core. 
Otherwise, instead of performance gain, the edge 
could cause a performance loss. 

Table 4: System response time (in ms) for different 
deployments 

#Mobile AllEdge 
R_System 

Split 
R_System 

AllCore 
R_System 

50 32,387 34,406 33,186 
100 32,565 34,561 33,971 
150 33,877 35,599 35,786 
200 147,071 140,219 164,326 

Figure 10: System response times for 3 different de-
ployments 

The system response times for the different deploy-
ments (see Figure 10 and Table 4) show a similar be-
havior as for the video retrieval class. The dominating 
workload in this model is the video workload, which 
has a stronger impact on the system response time than 
the other components.  

6.3 Impact of Network Latency 
The three network latencies were varied: mobile to 
edge ($me), mobile to core ($mc), and edge to core 
($ec). Experiments varied each of these from zero to 
the maximum expected latency value (200 ms). The 
results show that only the $ec latency has an important 
impact on performance. Changing $me and $mc does 
not show much impact because the number of requests 
made in these two paths are far fewer than the number 
of requests from edge to core. Moreover, $ec is also 
the latency whose impact is of most interest to us. Be-
cause, we know that only a few requests go from mo-
bile to core, and the edge cloud should stay close to 
the user, therefore $me>50 ms is not acceptable in 
practical scenarios. 
 For Split deployment and 150 mobiles the effect of 
changing $ec is shown in Figure 11 and Table 5. 
R_acceptX increases as we increase $me because 
transaction queries have a lot of communication be-
tween edge and core. 

Table 5: Response times (in ms) for different edge-to-
core latencies $ec 

$ec[ms] R_acceptX R_getVideo R_System 
0 8,230.16 31,735.7 33,614 
50 10,238.7 31,592.2 35,599 
100 12,247.4 31,457.7 37,587 
150 14,256.1 31,331.2 39,575 
200 16,264.8 31,213 41,565 

11 



 

 
Figure 11: Response times for varying edge-to-core 
latency $ec 

A consequence of higher congestion of acceptXact is 
that now this class of requests use fewer common re-
sources, which becomes available for the other class of 
requests (i.e., video). The effect is that R_getVideo is 
slightly decreasing as we increase $ec, as seen in Fig-
ure 11 and Table 5.   

6.4 Requesting More Data from 
Edge to Core 

A transaction request which is being processed at the 
edge might not find the required data there and have to 
retrieve data from the core database. A large edge da-
tabase reduces the probability of such an edge-miss, 
but edges are designed to contain only high-demand, 
local data, so misses are unavoidable. The system de-
signer must decide the amount of data the edge should 
fetch from the core cloud. 

Table 6: Impact of edge-to-core data access 

$nSDA R_acceptX 
[ms] 

R_System 
[ms] 

1 296.494 25,825 
500 25229.9 50,399 
1000 50220.1 75,174 

 
From Table 6 and Figure 12, we can see that increas-
ing the edge to core data access ($nSDA) increases the 
transaction and system response times. From this re-
sult, we can say that the system designer should aim 
for reducing the number of data accesses from edge to 
core. An intelligent partition of data and computation 
should reduce the edge to cloud data access and there-
fore improve system performance.  
 

 
Figure 12: Response times for varying edge-to-core 
data access $nSDA 

6.5 Moving Data between Edge and 
Core 

To improve system performance the most frequently 
used data should be stored in the edge, whereas the 
less frequently accessed data should be stored only in 
the core.   
 We have already mentioned that in the HCAT 
system the latency that most impacts the system per-
formance is the edge to core latency. So, if we can 
reduce the volume of edge to core communications, 
the system performance would be improved. Having a 
large edge database reduces the number of accesses 
the edge data analyzer needs to make to the core, and 
thus improves the system response time. This is seen 
in Table 7, where changing the core:edge data access 
ratio from (200:10) to (10:200) causes a huge reduc-
tion in response times of both R_accept (from 10,238 
ms to 746 ms) and R_System (from 35,599 to 26,266). 

Table 7: Large core DB vs  Large edge DB 

Xact data access 
ratio between 
Edge:Core

R_accept 
[ms] 

R_System 
[ms] 

10:200 10,238.7 35,599 
200:10 746.098 26,266 
   
 This means that the system designer should strive 
for a data partitioning which would allow the edge 
cloud to be able to access its required data locally 
most of the time. The system designer would certainly 
want to have a large edge database, but we know that 
the edge database cannot grow unlimited due to the 
resource limitation and high cost.  
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Summary 
 
Over all these experiments, we can see that: 
• The amount of data processed at the edge is not 

trivial. If we want to gain performance by using 
edge cloud, the edge needs to be sufficiently pow-
erful. This is particularly applicable for video data 
(See Figure 7 and Table 1) 

• It is very important that the edge has a large 
enough database to process locally the queries 
submitted to it. If the edge requires to visit the 
core frequently, then the edge-cloud interaction 
might cause performance degradation. 

• Among the three latencies: Mobile to Core, Mo-
bile to Edge and Core to Edge, the most sensitive 
latency is Edge to Core.  This is especially true for 
cases when the edge requires accessing the core 
for retrieving large amounts of data which needs 
to be transmitted fast enough to meet the response 
time requirements. 

• It is commonly assumed that the use of a Split 
deployment is better (in terms of performance) 
than AllCore or AllEdge deployment. In the ex-
periments we have found that this assumption is 
over-ambitious, as there are cases where split de-
ployment is the worst of the three deployments. 

7 Conclusion 
Network latency plays a key role in performance for 
software deployed across edge and core clouds. It is 
generally assumed that the use of edge clouds would 
improve the system performance. In this paper, we 
have challenged that assumption and compared the 
effect of network latency for various deployments and 
various configurations. The experiments collected 
response times for two different classes of traffic – 
transaction and video – that are very different in terms 
of service demands and edge-cloud access. We have 
shown that some system changes may improve the 
performance of one class of traffic while deteriorating 
other class of traffic. We have also shown that data 
partitioning plays a key role in cloud performance. 
The more the edge computations access core data, the 
worse the system response time gets.    
 This work can be extended in several ways. First, a 
cost-benefit analysis can be carried out on growing the 
size of the edge cloud. This would justify why we 
cannot have infinitely large edge database. Second, a 
sensitivity analysis [13] can be carried out to estimate 
the uncertainty in the prediction of the model and to 
apportion it to different sources of uncertainty in its 
inputs. Third, the exercise above can be applied to the 

actual HCAT application once it is deployed to real 
edge and core clouds.  
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