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Abstract—Software Defined Networking (SDN) has emerged
as a new paradigm that offers the programmability required
to dynamically configure and control a network. A traditional
SDN implementation relies on a logically centralized controller
that runs the control plane. However, in a large-scale WAN
deployment, this rudimentary centralized approach has several
limitations related to performance and scalability. To address
these issues, recent proposals have advocated deploying multi-
ple controllers that work cooperatively to control a network.
Nonetheless, this approach drags in an interesting problem, which
we call the Dynamic Controller Provisioning Problem (DCPP).
DCPP dynamically adapts the number of controllers and their
locations with changing network conditions, in order to minimize
flow setup time and communication overhead. In this paper, we
propose a framework for deploying multiple controllers within
an WAN. Our framework dynamically adjusts the number of
active controllers and delegates each controller with a subset of
Openflow switches according to network dynamics while ensuring
minimal flow setup time and communication overhead. To this
end, we formulate the optimal controller provisioning problem as
an Integer Linear Program (ILP) and propose two heuristics to
solve it. Simulation results show that our solution minimizes flow
setup time while incurring very low communication overhead.

I. INTRODUCTION

Software defined networking (SDN) has emerged as a new
paradigm that offers the programmability required to dynam-
ically configure and manage the network. By separating the
control plane from the data plane and shifting the control plane
to a conceptually centralized controller, SDN provides network
operators with a strong capability to implement a wide-range
of network policies (e.g., routing, security, fault-tolerance) and
the ability to rapidly deploy new network technologies.

The most common SDN implementation today relies on a
logically centralized controller that possesses a global view
of the network. Whenever a switch receives a new flow, it
requests the controller to install appropriate forwarding rules
along the desired flow path. The time required to complete
this operation is known as the flow setup time. However, in
a large-scale WAN deployment, this rudimentary centralized
approach has several limitations related to performance and
scalability. First, it is not always possible to find an opti-
mal placement of the controller that can ensure acceptable
latencies between the controller and the switches situated
at geographically distributed locations. Secondly, a single
controller usually has a limited resource capacity and hence
cannot handle large amount of flows originating from all the
infrastructure switches. In this case, the average flow setup

time can rise significantly and degrade application and service
performance [15].

To address these limitations, recent proposals have advo-
cated deploying multiple controllers that work cooperatively
to better manage network traffic flows [7], [14]. Nonetheless,
this approach introduces a new problem: minimizing flow
setup times by dynamically adapting the number of controllers
and their locations according to demand fluctuations in the
network. We call this problem the Dynamic Controller Pro-
visioning Problem (DCPP). Specifically, DCPP requires the
number of controllers to be sufficient to handle the current
network traffic, and their locations should ensure low switch-
to-controller latencies. However, the multi-controller deploy-
ment also requires regular state synchronization between the
controllers to maintain a consistent view of the network [12].
This communication overhead can be significant if the number
of controllers in the network is large. Finally, as network
traffic patterns and volumes at different locations can vary
significantly over-time, the controller placement scheme has
to react to network “hotspots” and dynamically re-adjust the
number and the location of controllers. Hence, the solution
to DCPP must always find the right trade-off between perfor-
mance (in terms of flow setup time) and overhead (controller
synchronization and management).

To the best of our knowledge, the only work that has inves-
tigated the controller placement problem is the one by Heller
et al. [8]. They studied a static version of the problem where
controller placement remain fixed over time, and analyzed the
impact of the controller locations on the average and worst-
case controller-to-switch propagation delay. However, a static
controller placement configuration may not be suitable forever
as network conditions can change over time.

To address this limitation, we propose a management frame-
work for dynamically deploying multiple controllers within
an WAN (Section III). Specifically, we consider the dynamic
version of the controller placement problem where both the
numbers and locations of controllers are adjusted according
to network dynamics. Our solution takes into account the
dynamics of traffic patterns in the network, while minimiz-
ing costs for (i) switch state collection, (ii) inter-controller
synchronization, and (iii) switch-to-controller reassignment.
We formulate DCPP as an Integer Linear Program (ILP)
that considers all aforementioned costs (Section IV). We then
propose two heuristics that dynamically estimates the number



of controllers and decide their placement in order to achieve
the desired objectives (Section V). The effectiveness of our
solution is then demonstrated using real-world traces and
WAN topologies (Section VI). Our results show that the
proposed algorithms minimize the average flow setup time
while incurring very low communication overhead. Finally,
we provide concluding remarks (Section VII).

II. RELATED WORK

SDN aims at decoupling the control plane from the data
plane. However, the original SDN architecture was designed
to use a centralized control plane, which is known to have
poor scalability for managing large networks. Recent research
works have proposed a number of techniques to overcome this
scalability limitation. These techniques can be classified into
two broad categories: (1) pushing intelligence into the switch
to offload the controller, and (2) distributing the control plane
across multiple controllers.

DevoFlow [5] and DIFANE [16] falls in the first category of
techniques. DevoFlow proposes to pre-install wildcard rules in
the switches that can replicate themselves for the mice flows to
create flow specific rules. The switches also have intelligence
to detect elephant flows. The controller is only responsible for
making forwarding decision for elephant flows. Similarly, in
DIFANE, the controller generates the forwarding rules, but it is
not involved in the setup of each new flow. Rather, the rules are
partitioned and distributed among a subset of switches called
“authoritative switches”. The regular switches, which forward
packets in data plane, redirect new flows to the authoritative
switches to learn about the forwarding rules. However, both
of these proposals require some changes to be made to the
commodity switches to increase their intelligence.

On the other hand, Kandoo [7], HyperFlow [14], and
Onix [10] propose to distribute the control plane across multi-
ple controllers to improve SDN’s scalability. Each of them
distributes controller states differently. Kandoo distributes
controller states by placing the controllers in a two level
hierarchy comprising a root controller and multiple local
controllers. Local controllers respond to the events that do not
depend on global network state (e.g., elephant flow detection),
while the root controller takes actions that require global
network view (e.g., re-routing elephant flows). HyperFlow
handles state distribution of the distributed controllers through
a publish/subscribe system based on the WheelFS distributed
file system. Finally, controller state distribution in Onix is
managed through a distributed hash table.

However, none of the aforementioned works consider the
issue of choosing suitable network locations for placing con-
trollers and adapting the placement according to the dynamic
behavior of the network. The problem regarding how many
controllers to place and where to place them in the network
was first studied by Heller et al. [8]. They analyzed the
impact of placing multiple controllers according to different
heuristics in a static setting and did not consider adapting
the number and placement of controllers with changing traffic
load. On the contrary, we propose a management framework

that takes both network performance (in terms of flow setup
time) and management overhead (for state synchronization)
into consideration to determine the number and placement of
controllers in the network. Furthermore, we aim at dynam-
ically provisioning SDN controllers over time to react with
traffic fluctuations.

III. SYSTEM DESCRIPTION

In this work, we consider a large WAN consisting of
OpenFlow enabled switches to deploy our system. However,
our proposed system also works with WANs with a mix of
OpenFlow and non-OpenFlow switches, where non-OpenFlow
switch simply work as forwarding elements. We also assume
that the network operator has provision to deploy or has
already deployed compute resources (e.g., servers) at particular
locations throughout the network. These servers are used to
deploy SDN controllers to control the OpenFlow enabled
switches in the network.

As explained in Section I, a single controller is not sufficient
for large WAN deployments. Hence, our system dynamically
partitions the set of OpenFlow switches into multiple domains
(henceforth we use “domain” to specify the set of OpenFlow
switches that are controller by a OpenFlow controller) based
on network dynamics and assigns one controller per domain.
At any time instance, a switch is controlled by a single
controller and each controller is responsible for setting up
paths in switches under its own domain.

A controller periodically collects port, flow, and table level
statistics from switches in its domain using OFPST_PORT,
OFPST_FLOW, and OFPST_TABLE OpenFlow messages, re-
spectively. Controllers exchange switch and link level informa-
tion with one another so that each controller can take forward-
ing decisions. The protocol for inter-controller communication
is out-of-scope for this paper and we plan to explore it in the
future. Each controller builds its own view of the network from
the exchanged information.

In our system controllers are always running on servers lo-
cated at designated network locations. A controller is regarded
as active if it has at least one switch assigned to it, otherwise
it is considered inactive. Inactive controllers keep listening on
a particular port for incoming HELLO messages from newly
assigned switches and consume very small amount of CPU
cycles and power. Our management framework periodically
evaluates the current switch-to-controller assignment and de-
cides whether to perform a reassignment based on the specified
constraints. If a reassignment is performed, the management
framework also changes the switch-to-controller assignment
in the network. Our management framework contains three
modules as depicted in Fig. 1 and explained below:
• Monitoring Module monitors controllers through periodic

heartbeat messages to ensure aliveness and pulls relevant
statistics from them.

• Reassignment Module periodically checks the collected
statistics by the monitoring module and decides whether
to perform a reassignment. This decision depends on
many criteria that will be explained in-detail in the
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Fig. 1. System architecture

following section. This module is also triggered by the
monitoring module to perform an instant reassignment in
case of a controller failure.

• Provisioning Module provisions controllers as required
and changes switch to controller associations.

During a reassignment an active controller may become
inactive, if all of its switches are assigned to other controllers
and an inactive controller may become active, if any switch
is assigned to it. The objective of our system is to keep a
set of controllers in the active state that results in close to
optimal flow setup times, while incurring low communication
overhead.

In our system, when a new flow arrives at a switch, the
switch first checks its forwarding table for a matching entry.
If a matching forwarding rule exists, packets in the flow are
forwarded according to the matching rule. If no such rule
exists, the switch sends a PACKET_IN OpenFlow message
to its controller. The controller computes a path contained
within its domain using its local knowledge about the network
and installs forwarding rules in the switches under its domain.
Two possible cases can arise next: (i) the flow may pass only
through switches under the current controller’s domain, or
(ii) it may pass though one or more other domains. In the
first case, we are already done as all switches in the flow’s
path have the necessary forwarding rules installed in their
forwarding tables. In the second case, additional flow setup
requests will be generated as shown in Fig. 2. In this figure,
a new flow arrives at switch i on port a. As the switch does
not have a matching forwarding entry, it sends a flow setup
request to its controller m. This request is called Initial path
setup request. Now, controller m computes a path (contained
within its own domain) for the flow. Lets say the path is
i.a → i.b → j.b → j.c (where i.a means port a of switch
i) and sets up the forwarding rules in switches i and j.
The packets in the flow are forwarded from port a to port
b of switch i and then from port b to port c of switch j,
eventually reaching port c of switch k. Switch k now searches
its forwarding table for a matching rule. If no such rule exists,
it sends a flow setup request to its controller n. This request
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Fig. 2. Path setup method with Flow setup cost
is termed as Intermediate path setup request. Now, controller
n computes a path contained in its own domain and installs
forwarding rules in switch k and l in a similar manner.

IV. PROBLEM FORMULATION

In this section, we formulate DCPP as an ILP. Specifically,
we model the network as an undirected graph, G = (S,E),
where S is the set of switches and E is the set of edges. Let
dij denote the cost of the shortest path between switches i
and j expressed in terms of propagation delay or number of
hops. F (F ⊆ S) is the set of locations where a controller
can be deployed. Let vector U = 〈u1, u2, . . . u|F |〉 represents
the capacities of the controllers. Hence, um is the maximum
number of requests controller m can handle per second. The
maximum allowable cost between a switch and its controller
is denoted by δ (expressed in the same unit as dij).

The traffic matrix is denoted by T = [τij ]|S|×|S|, where
τij represents the average number of flows over the current
time slot originating from switch i to its neighbor switch j as
reported by the monitoring module. Moreover, each diagonal
entry τii of T captures the average number of flows originated
at switch i, i.e., the average number of flows coming from the
networks served by switch i.

The reassignment algorithm is invoked at every Ta time
interval. The output of our ILP is an assignment matrix X =
[xim]|S|×|F |, where xim is equal to 1 if switch i is assigned to
controller m, and 0 otherwise. It also provides a binary vector
Y = 〈y1, y2, . . . y|F |〉 indicating which controllers are active
(i.e., ym = 1) and which are not (i.e., ym = 0).

We consider the following four costs that will be incurred
when deploying multiple controllers across the network:
1) Statistics collection cost (Cl) is the number of messages
per second required for the controllers to collect statistics from
their associated switches. Assuming that statistics are gathered
at each time interval Ts (note that Ts < Ta), this cost can be
expressed as follows:

Cl =
⌊Ta
Ts

⌋∑
i∈S

∑
m∈F

dimxim (1)



2) Flow setup cost (Cp) is the total cost incurred for setting
up the flow rules across end-to-end paths. As explained in
Fig. 2, this cost can be divided into three components. First,
the initial path setup request for the flows originated at the
switches:

Cp
R =

∑
i∈S

∑
m∈F

τiiximdim (2)

Secondly, the intermediate path setup requests at each switch
for the flows coming from a neighbor switch controlled by a
different controller:

Cp
Q =

∑
i∈S

∑
j∈S

∑
m∈F

∑
n∈F

τjixjn(1− xin)ximdim (3)

Finally, the rule installation cost incurred for the rule installa-
tion messages from the controllers:

Cp
L =

∑
i∈S

∑
j∈S

∑
m∈F

τjiximdim (4)

Combining Equations (2), (3), and (4), we can derive the flow
setup cost as follows:

Cp = Cp
R + Cp

Q + Cp
L (5)

3) Synchronization cost (Cs) represents the number of mes-
sages exchanged between controllers in order to maintain
a consistent network-wide view in all of them. We assume
messages are exchanged every Tx seconds (note that Tx < Ta).
We also consider critical events that force a controller to
instantaneously synchronize state with other controllers. As-
suming e is a random variable that represents the occurrence
frequency of critical events in the system. We can define
the number of inter-controller state synchronization messages
generated within time Ta considering both periodic and critical
events as follows:

NE =
⌊Ta
Tx

⌋
+

∫ Ta

0

e · p(e)de (6)

Here, p(e) is the probability distribution function of e. The
synchronization cost can be defined as follows:

Cs =
NE
Ta

∑
m∈F

∑
n∈F

ymyndmn (7)

4) Switch reassignment cost (Cr) is the cost of assigning
a switch to a new controller. Ideally, it is better to avoid
frequent reassignment of switches. Assume that the previous
assignment is given by the matrix X̃ = [x̃im]|S|×|F |. We define
the matrix Z = [zim]|S|×|F | as the XOR between the new
assignment X and the previous assignment X̃ . In particular,
zim = 1 if the assignment of switch i has been changed to
(or from) controller m, otherwise zim = 0.

Cr =
∑
i∈S

∑
m∈F

dimzim (8)

The objective of our optimization problem is to minimize
the weighted sum of the aforementioned mentioned four costs
and can be expressed as follows:

αCl + βCp + γCs + λCr (9)

Here, α, β, γ, and λ are constants, the network operator
can use to adjust the relative significance of the four cost
components. Furthermore, the following constraints must be
satisfied in order to guarantee a feasible solution:

∀i∈S :
∑
m∈F

xim = 1 (10)

∀m∈F :
∑
i∈S

ximτii +
∑
i∈S

∑
j∈S

∑
n∈F

τjixjn(1− xin)xim ≤ ymum

(11)

∀i∈S,m∈F : ximdim ≤ δ (12)

∀i∈S,m∈F : xim ≤ ym (13)

∀i∈S,m∈F : zim ≤ xim + x̃im

zim ≥ xim − x̃im
zim ≥ −xim + x̃im

zim ≤ 2− xim − x̃im

(14)

∀i∈S,m∈F : xim, zim ∈ {0, 1} (15)

∀m∈F : ym ∈ {0, 1} (16)

Constraint (10) guarantees that every switch is controlled by
exactly one controller at a given time. Inequality (11) ensures
that a controller can satisfy the path setup requests from the
switches assigned to it. Note that the total number of path
setup requests to a controller is composed of all initial and
intermediate path setup requests from all switches that it is
currently controlling. Inequality (12) gives an upper bound δ
on the maximum delay between a switch and its designated
controller. The condition on assigning a switch to an active
controller is represented by Inequality (13). The inequalities
of (14) ensure that zim is the XOR of the variables xim and
x̃im. Equations (15) and (16) indicate that xim, ym, and zim
are binary variables. This formulation generalizes the Single
Source Unsplittable Flow Problem [9], which is known to be
NP-Hard. Therefore, we propose two heuristics to solve this
problem that are described in the subsequent sections.

V. PROPOSED HEURISTIC

In this section, we describe two heuristics for solving
DCPP: (i) DCP-GK: a greedy approach based on the knap-
sack problem, and (ii) DCP-SA: a simulated annealing based
meta-heuristic approach. The input to both heuristics include
network topology G, traffic matrix T , previous switch–to–
controller assignment X̃ , set of switches S, possible controller
locations F , controller capacity vector U , and delay constraint
δ. The goal of these heuristics is to find a feasible switch–
to–controller assignment that minimizes the cost function
expressed in Equation (9) based on current network conditions.



A. Dynamic Controller Provisioning with Greedy Knapsack
(DCP-GK)

Here, we model each controller as a knapsack. The capacity
of each knapsack is equal to the processing capacity (measured
in number of flow setup requests it can handle per time
interval, 60 minutes in our simulations) of its corresponding
controller. We consider the switch as the objects to be added
in the knapsack. We model the weight of a switch as the
number of new flows it generates within the previous time
interval and the profit of taking a switch is the inverse path
cost between the switch and that controller. Each iteration of
our algorithm activates a single controller. This controller is
chosen such that the sum of path costs from that controller
to the unassigned switches is minimum and within the given
delay bound δ. Then we run the greedy knapsack algorithm
to assign switches to that controller. If no switch could be
assigned to a controller it is deactivated. The iterations stop
when all the switches are assigned to a controller or no more
controllers can be activated. If there are unassigned switches
after all the iterations are completed, the switches are assigned
randomly between the activated controllers. This may break
the capacity and delay constraints. However, this exceptional
case occurred very rarely during our simulations.

B. Dynamic Controller Provisioning with Simulated Anneal-
ing (DCP-SA)

The DCP-SA heuristic provides a feasible switch-to-
controller assignment X considering the previous assignment
matrix X̃ as an initial state for simulated annealing. However,
due to a change in traffic pattern, X̃ may violate the capacity
constraint depicted in Equation (11). Therefore, the objective
of Algorithm 1 is to generate a feasible switch to controller
assignment from the current unfeasible assignment. The output
of this algorithm is provided as an input to Algorithm 2 which
runs the simulated annealing algorithm to improve the switch-
to-controller assignment.

More specifically, Algorithm 1 first identifies the set of
controllers Fv for which capacity constraints are violated.
Then it tries to lower the load on each f ∈ Fv by reassigning
one or more switches to other controllers without violating
the capacity constraint. To achieve this objective, Algorithm 1
first sorts all switches Sf assigned to controller f according
to their rank defined by the following equation:

ri =
∑
j∈S

τij (17)

Let s∗ denote the switch with the highest rank in Sf . A
set of feasible controllers Fs∗ is identified for s∗ such that
each controller in Fs∗ is within the bound δ from s∗ and
also has sufficient capacity to handle requests from s∗. The
algorithm then selects the controller with the smallest re-
maining capacity f̃ , and assigns s∗ to f̃ . The intuition is
to minimize the fragmentation of remaining capacity of the
controllers during the reallocation. The assignment matrix X̃
is then updated accordingly. This reallocation procedure for
controller f continues until the capacity constraint for f is

Algorithm 1 Algorithm for generating feasible initial state
Input: Topology, G

Traffic Matrix, T
Previous Assignment, X̃
Set of switches, S
Set of controllers, F
Controller capacity vector, U

Output: New Feasible Assignment, X̃
1: Fv ← Set of controllers for which X̃ violates capacity constraints
2: while Fv 6= ∅ do
3: Select a controller f from Fv
4: Sf ← Set of switches assigned to controller f
5: while Capacity of f is violated do
6: Sort Sf according ri defined by Equation (17)
7: s∗ ← first node in Sf

8: Fs∗ ← Feasible controllers of s∗ with remaining capacity
greater than the demand of s∗

9: if Fs∗ 6= ∅ then
10: f̃ ← Controller with smallest remaining capacity in Fs∗

11: Assign s∗ from f to f̃ and update X̃
12: end if
13: Sf ← Sf \ {s∗}
14: end while
15: Fv ← Fv \ {f}
16: end while

Algorithm 2 Reassignment algorithm
Input: Topology, G

Traffic Matrix, T
Feasible Previous Assignment, X̃
Set of switches, S
Set of controllers, F
Controller capacity vector, U

Output: New Assignment, X
1: X ← X̃
2: FS ← Feasible controllers for S considering delay constraints
3: Select an initial temperature Temp > 0
4: current← X̃
5: for t← 1 to ∞ do
6: Temp←Schedule(t)
7: if Temp = 0 then
8: break
9: end if

10: i← 1
11: repeat
12: next← Successor(current, FS)
13: ∆← Cost(current)− Cost(next)
14: if ∆ > 0 then
15: current← next
16: else
17: current← next only with e

∆
Temp probability

18: end if
19: if Cost(current) < Cost(X ) then
20: X ← current
21: end if
22: i← i+ 1
23: until i 6= N
24: end for

satisfied. Algorithm 1 repeats this reallocation procedure for
each of the controllers in set Fv until the switch to controller
assignment X̃ becomes feasible.

Starting from a feasible assignment X̃ , Algorithm 2 uses
a variant of simulated annealing to further optimize the as-
signment. We define the following local search moves for this
algorithm (sorted in decreasing order of preference):
• Relocate Switch: selects a switch randomly and assigns

it to a different active controller. If no switch is assigned
to a controller after this move, it is deactivated.

• Swap switches: selects two switches randomly from two



different controllers and swap their assignments.
• Activate controller: activates a randomly chosen inactive

controller.
• Merge assignments: randomly selects two controllers

and reassigns all switches of one controller to the other.
The idle controller is then deactivated.

The Successor procedure in Algorithm 2 returns a random next
state from the current state using one of the aforementioned
moves. This procedure always returns a feasible successor such
that no constraint is violated.

VI. EVALUATION

We evaluate the performance of our proposed framework
through extensive simulations. We tried different simulation
methodologies to find a suitable one for our purpose. First, we
tried to use Mininet [11] with POX [1] controllers deployed
on the same physical machine, but found that mininet is
inadequate for our purpose as it cannot handle the amount
of traffic we wanted to simulate. Mininet simulates hosts
and switches in separate network namespaces and connects
them with virtual Ethernet interfaces. Traffic from switch-to-
host, switch-to-switch, and switch-to-controller flows through
the loopback interface of the physical machine. As a result,
the switching capability of this loopback interface limits
the amount of traffic that Mininet can simulate. As we are
simulating large WAN networks, the amount of traffic is huge
and the loopback interface was not able to process it in
a timely manner. Second, we ran Mininet in one physical
machine and ran the controllers in multiple physical ma-
chines, hoping to decrease the load on the loopback interface.
However, in this case traffic from different switches were
serialized through the loopback interface, whereas they should
be forwarded to their respective controllers in parallel. Due
to this serialization, the impact of traffic is skewed and the
obtained results are characterized by the switching capability
of the loopback interface, instead of the generated traffic.
So, we opted for an in-house simulator where we simulate
the propagation delays between switch-to-switch, switch-to-
host, and switch-to-controller. Controller capacity is simulated
using the results provided by Tootoonchian et al. [15] for
the NOX [2] controller. All our simulations were conducted
on a single machine with dual quad-core 2.4GHz Intel Xeon
E5620 processors and 12-GB of RAM. In the following, we
first describe in detail the simulation setup and the dataset
we used. We then describe the metrics used to evaluate the
effectiveness of our proposed framework. Finally, we compare
our DCP algorithms (DCP-GK and DCP-SA) with two static
scenarios: in the first case, a single controller is used for the
entire network (1-CRTL), while in the second, one controller
is used for each switch (N-CTRL).

A. Simulation Setup

In our experiments, we simulate two different ISP topolo-
gies RF-I (79 nodes, 294 links) and RF-II (108 nodes, 306
links) with inter-node latencies obtained from the RocketFuel

repository [13]. We assume each node in the RocketFuel topol-
ogy to be an OpenFlow switch. We assume that controllers can
be dynamically provisioned at any of these switches’ locations.
Controllers communicate with each other to exchange and
synchronize switch status and port level status. Each controller
computes a path for a new incoming flow from the information
it has about the network in its local database and sets up paths
according to the method described in Section III.

We use iperf to generate TCP flows between the end
hosts [3]. The end hosts of each flow is chosen randomly.
To make the traces more realistic, we generated the flows
according to the distribution of flow sizes, flow inter arrival
times, and number of concurrent flows reported in a recent
study on network traffic characterization [6]. The generated
traffic spans 48 hours capturing the time-of-day effect.

Finally, the management framework is implemented in
Python. Specifically, the monitoring module periodically pulls
statistics from the controllers, the reassignment module runs a
heuristic (either DCP-GK or DCP-SA) using these statistics to
find the next switch-to-controller assignment, and the provi-
sioning module assigns switches to their controllers according
to the assignment generated by the reassignment module.

B. Results

We run each simulation for 48 hours with the reassignment
heuristic running every 60 minutes. The reassignment interval
can be further tuned through a more detailed analysis of the
traffic. At each interval, we compute the average flow setup
time, the set of active controllers, and the number of exchanged
messages between the active controllers.

Fig. 3 shows the number of active controllers and average
flow setup time during each interval for both topologies. For
the one controller (1-CTRL) case, flow setup time varies with
traffic load. If there is a peak in traffic then flow setup time also
increases. A single controller cannot keep the flow setup time
consistent or within acceptable limits, which is reported to be
200ms in [4] for mesh restoration. Hence, a single controller
cannot provide any service guarantees. On the other hand
in the N-CTRL case, the flow setup time is almost zero as
expected. However, in this case the messaging overhead is
much higher (as shown in Fig. 5 and explained later in this
section). Fig. 3(a) and Fig. 3(b) report the above mentioned
metrics for topology RF-I, using greedy knapsack (DCP-GK)
and simulated annealing (DCP-SA) heuristics, respectively.
DCP-GK keeps the flow setup time within 140ms and manages
to keep it consistent even during traffic spikes. Even though
we can see small spikes in flow setup time, none of them is
as high as for the 1-CTRL case. DCP-GK also uses much
fewer controllers than N-CTRL. The maximum number of
controllers used by DCP-GK is only 25, during time interval
22, which is around 30% of the N-CTRL (79 controllers)
case. From Fig. 3(b), we can see that DCP-SA performs much
better than DCP-GK and 1-CTRL. Flow setup time is within
60ms and number of controllers is less than that of both DCP-
GK and 1-CTRL. It uses a maximum of 18 controllers that
is around only 23% of the N-CTRL case. Effect of traffic
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(a) DCP-GK on RF-I
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(b) DCP-SA on RF-I
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(c) DCP-GK on RF-II
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(d) DCP-SA on RF-II
Fig. 3. Controller Count and Flow Setup Time vs. Time

spikes is further reduced in this case and the flow setup time
is almost constant throughout 48 hours of simulated time. This
shows the effectiveness of our dynamic controller provisioning
mechanism. Similar behavior is also observed for RF-II as
reported in Fig. 3(c) and 3(d).

Although DCP-SA outperforms DCP-GK in both number
of controllers and flow setup time, there is a penalty. DCP-
SA requires much longer time to run than DCP-GK. In our
simulation setup, DCP-SA took around 2 minutes to perform
one reassignment for topology RF-I, whereas DCP-GK took
only 0.41 seconds. For topology RF-II DCP-SA took around 4
minutes and DCP-GK took only 0.44 seconds. So, DCP-SA is
preferable for near-optimal solutions and DCP-GK is suitable
when we need solutions within a small amount of time.

Fig. 4(a) and Fig. 4(b) show the CDFs of flow setup time for
topologies RF-I and RF-II, respectively. We can see that DCP-
SA outperforms both DCP-GK and 1-CTRL in both cases by
a large margin. DCP-SA always provides shorter flow setup
time than 1-CTRL and all flows are setup within the acceptable
range of 200ms. For RF-I, DCP-SA takes at most 120ms
and for RF-II, it takes at most 150ms. While DCP-GK takes
longer, it completes 99% flow setups within the acceptable
range of 200ms for both topologies. On the other hand 1-
CTRL can complete only 60% flow setups within 200ms and
the maximum time it takes is close to 450ms (more than twice
of the acceptable range) for both topologies. DCP-GK cannot
outperform 1-CTRL for low flow setup time, which is evident
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Fig. 4. CDF of Flow Setup Time

in Fig. 3(a) and Fig. 3(c). This happens during low traffic load
conditions. This is a direct consequence of the greediness of



this heuristic, as it chooses the best controller at each stage
without looking ahead and thereby missing a better solution.
The N-CTRL case shows the lowest flow setup time, but this
is a hypothetical, un-realistic lower bound. Clearly, connecting
one controller per switch – is not an acceptable solution for
this problem. We included it for comparing with the absolute
lowest possible flow setup time.
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Fig. 5. Summary of Overhead and Average Flow Setup Time

Fig. 5(a) and Fig. 5(b) report the messaging overhead and
average flow setup time for both topologies. 1-CTRL has
the lowest messaging overhead as there is no synchronization
and controller-to-controller communication overhead. On the
other hand, N-CTRL has the highest messaging overhead as
every controller is communicating with every other controller.
Messaging overhead for DCP-GK and DCP-SA is in between
these two. Overhead for DCP-SA is smaller than DCP-GK as
it uses fewer number of controllers and is very close to the 1-
CTRL (lower bound) case for both topologies. As mentioned
earlier, average flow setup time for DCP-SA is lower than both
DCP-GK and 1-CTRL, but higher than N-CTRL. For topology
RF-I and RF-II, average flow setup time for DCP-SA is 29 and
34ms, respectively. For the N-CTRL case flow setup times are
much lower (3.5 and 9ms, respectively). So, DCP-SA provides
flow setup times very close to N-CTRL (hypothetical lower
bound for flow setup time) case and also incurs messaging
overhead very close to 1-CTRL (lower bound for messaging
overhead) case. On the other hand, DCP-GK does not provide
as good result as DCP-SA, but the solutions are quite good
and require fractions of seconds to run.

VII. CONCLUSION

In this paper, we identified the Dynamic Controller Provi-
sioning Problem (DCPP) in SDN. We proposed a management

framework for dynamically deploying multiple controllers.
We also provided a mathematical formulation of DCPP as
an ILP. Since DCPP is an NP-hard problem, we provided
two heuristic algorithms (DCP-GK and DCP-SA) to solve
it. The emulation results presented in this paper provide
important insights on various controller placement strategies.
Running a single controller causes high flow setup delay, as
propagation delay between controller and switches are higher
and flow setup requests can get queued at the controller
because of limited processing capacity. On the other hand,
running one controller per switch can provide close to zero
flow setup times, but incurs significant overhead for inter-
controller communication. Our framework achieves a balance
between flow setup time and messaging overhead. Emulation
results show that, DCP-SA and DCP-GK succeed to find a
right trade-off between these two extremes and provide near
optimal solutions. DCP-SA provides better results than DCP-
GK, but takes longer to converge.

We intend to extend this work in three directions. First,
we want to improve the convergence time of DCP-SA. An
interesting approach is to generate quick but less accurate
initial solutions using DCP-GK and then optimizing them
using DCP-SA. Second, we want to explore other heuristic
algorithms to achieve better performance and accuracy. Third,
we intend to further demonstrate the effectiveness of the
proposed management framework through experiments on a
real testbed.
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