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Abstract—Cloud computing promises to provide on-demand com-
puting, storage and networking resources. However, most cloud
providers simply offer virtual machines (VMs) without bandwidth and
delay guarantees, which may hurt the performance of the deployed
services. Recently, some proposals suggested remediating such
limitation by offering Virtual Data Centers (VDCs) instead of VMs
only. However, they have only considered the case where VDCs
are embedded within a single data center. In practice, infrastructure
providers should have the ability to provision requested VDCs across
their distributed infrastructure to achieve multiple goals including
revenue maximization, operational costs reduction, energy efficiency
and green IT, or to simply satisfy geographic location constraints of
the VDCs.

In this paper, we propose Greenhead, a holistic resource man-
agement framework for embedding VDCs across geographically
distributed data centers connected through a backbone network. The
goal of Greenhead is to maximize the cloud provider’s revenue while
ensuring that the infrastructure is as environment-friendly as pos-
sible. To evaluate the effectiveness of our proposal, we conducted
extensive simulations of four data centers connected through the
NSFNet topology. Results show that Greenhead improves requests’
acceptance ratio and revenue by up to 40% while ensuring high
usage of renewable energy and minimal carbon footprint.

Index Terms—Green Computing, Energy Efficiency, Cloud Comput-
ing, Virtual Data Center, Distributed Infrastructure

1 INTRODUCTION

Cloud computing has recently gained significant pop-
ularity as a cost-effective model for hosting large-
scale online services in large data centers. In a cloud
computing environment, an Infrastructure Provider
(InP) partitions the physical resources inside each data
center into virtual resources (e.g., Virtual Machines
(VMs)) and leases them to Service Providers (SPs) in
an on-demand manner. On the other hand, a service
provider uses those resources to deploy its service
applications, with the goal of serving its customers
over the Internet.

Unfortunately, current InPs like Amazon EC2 [1]
mainly offer resources in terms of virtual machines
without providing any performance guarantees in
terms of bandwidth and propagation delay. The lack
of such guarantees affects significantly the perfor-
mance of the deployed services and applications [2].

To address this limitation, recent research proposals
urged cloud providers to offer resources to SPs in the
form of Virtual Data Centers (VDCs) [3]. A VDC is a
collection of virtual machines, switches and routers
that are interconnected through virtual links. Each
virtual link is characterized by its bandwidth capacity
and its propagation delay. Compared to traditional
VM-only offerings, VDCs are able to provide better
isolation of network resources, and thereby improve
the performance of service applications.

Despite its benefits, offering VDCs as a service
introduces a new challenge for cloud providers called
the VDC embedding problem, which aims at mapping
virtual resources (e.g., virtual machines, switches,
routers) onto the physical infrastructure. So far, few
works have addressed this problem [2], [4], [5], but
they only considered the case where all the VDC
components are allocated within the same data center.
Distributed embedding of VDCs is particularly ap-
pealing for SPs as well as InPs. In particular, a SP
uses its VDC to deploy various services that operate
together in order to respond to end users requests. As
shown in Fig. 1, some services may require to be in
the proximity of end-users (e.g., Web servers) whereas
others may not have such location constraints and can
be placed in any data center (e.g., MapReduce jobs).

On the other hand, InPs can also benefit from
embedding VDCs across their distributed infrastruc-
ture. In particular, they can take advantage of the
abundant resources available in their data centers and
achieve various objectives including maximizing rev-
enue, reducing costs and improving the infrastructure
sustainability.

In this paper, we propose a management framework
able to orchestrate VDC allocation across a distributed
cloud infrastructure. The main objectives of such
framework can be summarized as follows.

- Maximize revenue. Certainly, the ultimate ob-
jective of an infrastructure provider is to increase
its revenue by maximizing the amount of leased re-
sources and the number of embedded VDC requests.
However, embedding VDCs requires satisfying dif-
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Fig. 1: Example of VDC deployment over a distributed
infrastructure

ferent constraints, namely the capacity and location
constraints. Obviously, the embedding scheme must
ensure that the capacity of the infrastructure is never
exceeded. In addition, it must satisfy location con-
straints imposed by SPs.

- Reduce backbone network workload. To cope
with the growing traffic demand between data cen-
ters, infrastructure providers tend to build their pro-
prietary wide-area backbone network to interconnect
their facilities (e.g., Google G-scale network [6]). In
this context, one key objective when embedding VDCs
is to minimize the traffic within the backbone net-
work. Indeed, it has been reported recently that the
cost of building an inter-data center network is much
higher than the intra-data center network cost and it
accounts for 15% of the total infrastructure cost [7]. In
addition, according to several studies [8], wide area
data transport is bound to be the major contributor
to the data transport costs. Hence, it is crucial to
reduce the backbone network traffic and place high-
communicating VMs within the same data center
whenever possible.

- Reduce data center operational costs. Reducing
data centers’ operational costs is a critical objective
of any infrastructure provider as it impacts its budget
and growth. This can be achieved through minimizing
energy costs, which constitutes a significant portion
of the total operational expenditure. To this end, two
key techniques can be adopted: (1) placing more
workload into the most energy-efficient data centers,
and (2) taking advantage of the difference in electricity
prices between the locations of the infrastructure facil-
ities. In particular, energy-efficient data centers can be
identified by their Power Usage Effectiveness (PUE),
and favored to host more virtual machines.

Furthermore, InPs can achieve more savings by
considering the fluctuation of electricity price over
time and the price difference between the locations of

the data centers. Hence, VMs can be efficiently placed
such that the total electricity cost is minimized.

- Reduce the carbon footprint. Recent research has
reported that, in 2012, the carbon footprint of data
centers around the world accounted for 0.25% of the
worldwide carbon emission, which constitutes 10% of
Information and Communication Technologies (ICT)
emissions [9]. As a result, InPs are facing a lot of
pressure to operate on renewable sources of energy
(e.g., solar and wind power) to make their infras-
tructure more green and environment-friendly. Based
on these observations, an efficient VDC embedding
scheme should maximize the usage of renewables and
take into account their availability, which depends
on the data center geographical location, the time of
the day (e.g., day and night for solar power) as well
as the weather conditions (e.g., wind, atmospheric
pressure). Furthermore, whenever the power from the
electric grid is used, the VDC embedding scheme has
to minimize the infrastructure carbon footprint. In
that case, the placement of the VMs is critical since
the carbon footprint per watt of power varies from
location to location.

In this paper, we propose Greenhead, a resource
management framework for VDC embedding across
a distributed infrastructure. Greenhead aims at max-
imizing the InP’s revenue by minimizing energy
costs, while ensuring that the infrastructure is as
environment-friendly as possible. To reduce the com-
plexity of the problem, we propose a two-step ap-
proach. We first divide a VDC request into partitions
such that the inter-partition bandwidth demand is
minimized and the intra-partition bandwidth is maxi-
mized. The aim of such partitioning is to embed VMs
exchanging high volumes of data in the same data
center. This significantly reduces the traffic carried by
the backbone, and thereby improves requests’ accep-
tance ratio. We then propose a simple yet efficient al-
gorithm for assigning partitions to data centers based
on electricity prices, data centers’ PUEs, availability
of renewables and the carbon footprint per unit of
power.

To the best of our knowledge, this is the first
effort to address VDC embedding problem over a
distributed infrastructure taking into account energy
efficiency as well as environmental considerations.

The remainder of this paper is organized as follows.
In Section 2, we present related works relevant to
ours. We then describe the proposed management
framework in Section 3. We provide a mathematical
formulation of the VDC embedding problem across
a distributed infrastructure in Section 4. Section 5
presents a detailed description of the proposed algo-
rithms for VDC partitioning and embedding. Section 6
discusses the simulation results showing the effec-
tiveness of Greenhead. We finally provide concluding
remarks in Section 7.
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2 RELATED WORK
In this section, we survey relevant research in the lit-
erature. We classified previous work into three related
topics, namely: VDC embedding within a single data
center, virtual network embedding, and workload
scheduling across geographically distributed data
centers.

• VDC Embedding within a single data center
So far, only few works have addressed VDC embed-

ding problem. For instance, Guo et al. [5] proposed a
data center network virtualization architecture called
SecondNet that incorporates a greedy algorithm to
allocate resources to VDCs. Ballani et al. [2] proposed
two abstractions for VDCs, namely a virtual cluster
and an oversubscribed virtual cluster. They developed
Oktopus, an implementation of those abstractions that
uses a greedy algorithm for mapping virtual resources
to a tree-like physical topology. Finally, Zhani et al.
[4] presented VDC Planner, a resource management
framework for data centers that leverages dynamic
VM migration to improve the acceptance ratio of
VDCs, and thereby increases InP’s revenue. They also
proposed a VDC consolidation algorithm to minimize
the number of active physical servers during low-
demand periods. Unfortunately, the above proposals
cannot be directly applied to allocate resources in
multiple data centers due to the large size of the
resulting topology. In addition, for a distributed en-
vironment, different considerations should be taken
into account such as carbon footprint of the data
centers and variability of electricity prices over time
and between different locations.

The only work we are aware of that addressed
multi-data center embedding problem is that of Xin
et al. [10]. They proposed an algorithm that uses
minimum k-cut to split a request into partitions before
assigning them to different locations. However, this
work has only aimed at load balancing the work-
load through request partitioning without considering
other objectives like revenue maximization, backbone
network usage optimization, energy efficiency and
green IT. Furthermore, it does not consider constraints
on the VM placement.

• Virtual Network Embedding
Virtual network embedding has been extensively

studied in the literature. It basically aims at embed-
ding virtual nodes (mainly routers) and links on top
of a physical backbone substrate. Current proposals
have addressed the embedding problem either in a
single domain (i.e., a backbone owned and managed
by a single InP) or in multiple domains (i.e., multiple
networks managed by different InPs).

In the single domain case, the InP tries to embed
the virtual networks while aiming to achieve multiple
objectives including: (1) minimizing the embedding
cost [11], (2) maximizing the acceptance ratio and
revenue [12], [13], and (3) improving energy efficiency
[14], [15].

In the multi-domain case, the request is provisioned
across multiple domains belonging to different InPs.
Houidi et al. [16] proposed a centralized approach
where the SP first splits the request using Max-Flow
Min-Cut based on prices offered by different InPs then
decides where to place the partitions. Chowdhury et
al. [17] proposed a distributed embedding solution
called PolyVine. In PolyVine, the virtual network re-
quest is sent to a single InP, which tries to allocate
as much resources as possible in his own network
before forwarding the un-embedded nodes and links
to a neighboring provider. The process continues re-
cursively until the whole request is embedded.

The above proposals on virtual network embedding
cannot be directly applied to the VDC embedding
problem for many reasons. While a virtual network
can be made of tens of nodes (mainly routers), a
VDC, expected to be similar to a real data center,
may comprise thousands of nodes of different types
(e.g., VMs, virtual switches and routers). There is,
therefore, a definite need for developing new solu-
tions able to embed large scale VDCs and to consider
the diversity of resources. Finally, previous works do
not take advantage of the variability of electricity
prices between different locations and also ignore
environmental considerations.
• Workload placement in geographically dis-

tributed data centers
Several works have addressed the problem of work-

load placement in geographically distributed data
centers. They either aimed at reducing energy costs
[18]–[20], or minimizing the carbon footprint [21], [22]
or both [23].

Generally, energy costs are cut down by taking
advantage of the variability of electricity prices be-
tween different data centers and even at the same
location over time. The carbon footprint is reduced
by following the renewables available during some
periods of the day. For instance, Zhang et al. [18]
used a model predictive control framework for ser-
vice placement. Services are dynamically placed in
data centers and migrated according to the demand
and price fluctuation over time while considering the
migration cost and the latency between services and
end-users. Qureshi et al. [20] addressed the problem
of replica placement and request routing in Content
Distribution Networks (CDN). They aimed at reduc-
ing electricity costs by dynamically placing data at
locations with low electricity prices. Gao et al. [24]
addressed the same problem but they aimed at min-
imizing energy costs, carbon footprint and the delay
between end users and the location of the data. Liu
et al. proposed a framework for workload assign-
ment and dynamic workload migration between data
centers that minimizes the latency between end-users
and services while following renewables and avoiding
using power from the electricity grid [21], [22]. Le et
al. [25] proposed a workload assignment framework
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Fig. 2: VDC embedding across multiple data centers

across multiple data centers that minimizes the costs
of energy consumed by IT and cooling equipment
depending on the fluctuations of electricity prices and
the variability of the data centers’ PUEs.

However, the main limitation of the aforementioned
proposals is that they ignore the communication pat-
terns and the exchanged data between the VMs. This
makes such approaches not applicable for embedding
VDCs since we need also to consider bandwidth and
delay requirements between the VDC components.

In summary, our work is different from traditional
virtual network and VDC embedding proposals since
it considers resource allocation for VDCs across the
whole infrastructure including data centers and the
backbone network connecting them. It also differs
from service placement works since we are provi-
sioning all types of resources including computing,
storage and notably networking (i.e., bandwidth and
delay).

To the best of our knowledge, this work is the
first effort to address VDC embedding across a dis-
tributed infrastructure while considering the usage of
the backbone network, the variability of electricity
prices, energy efficiency as well as environmental
considerations.

3 SYSTEM ARCHITECTURE

In this work, we consider a distributed infrastructure
consisting of multiple data centers located in differ-
ent regions and interconnected through a backbone
network (see Fig. 2). The entire infrastructure (includ-
ing the backbone network) is assumed to be owned
and managed by the same infrastructure provider.
Each data center may operate on on-site renewable
energy (e.g., wind, solar) and resorts to electricity
grid only when its on-site renewable energy becomes
insufficient. Unfortunately, renewables are not always
available as they depend on the data center location,
the time of the day and external weather conditions.

While renewable energy has no carbon footprint, en-
ergy from the grid is usually produced by burning
coal, oil and gas, generating high levels of carbon
emissions. As a result, whenever electricity is drawn
from the grid, cloud provider has to pay a penalty
proportional to the generated carbon emission. The
generated carbon depends on the source of power
used by the electric grid supplier, which could be a
renewable source or a conventional one or a mix of
both. Furthermore, it is also worth noting that prices
of the grid electricity differ between regions and they
even vary over time in countries with deregulated
electricity markets.

As shown in Fig. 2, a SP sends the VDC request
specifications to the InP, which has the responsibility
of allocating the required resources. Naturally, the
cloud provider will make use of its distributed infras-
tructure with the objective of maximizing its revenue
and minimizing energy costs and carbon footprint;
this is where our proposed management framework,
Greenhead, comes into play. Greenhead is composed
of two types of management entities: (1) a central
controller that manages the entire infrastructure and
(2) a local controller deployed at each data center to
manage the data center’s internal resources.

The central management entity includes five com-
ponents as depicted in Fig. 2:

• The Partitioning Module is responsible for splitting
a VDC request into partitions such that inter-
partition bandwidth is minimized. The aim of
this module is to reduce the number of virtual
links provisioned between data centers. Each par-
tition is supposed to be entirely embedded into
a single data center. The motivation behind such
partitioning will be explained in Section 5.1.

• The Partition Allocation Module is responsible for
assigning partitions to data centers based on run-
time statistics collected by the monitoring mod-
ule. It ensures that all partitions are embedded
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while achieving cost effectiveness, energy effi-
ciency and green IT objectives such as reducing
energy costs from the power grid and maximiz-
ing the use of renewable sources of energy.

• The Inter-data center Virtual Link Allocation Module
allocates virtual links in the backbone network.
Those virtual links connect VMs that have been
assigned to different data centers.

• The Monitoring Module is responsible for gath-
ering different statistics from the data centers.
The collected information includes PUE, resource
utilization, outdoor temperature, electricity price
and the amount of available renewable energy.

• The VDC Information Base contains all information
about the embedded VDCs including their parti-
tions and mapping either onto the data centers
or the backbone network.

Regarding the local controller at each data center,
its main role is to manage the resources within the
data center itself. Specifically, it allocates resources
for a partition of a VDC as requested by the central
controller. If the embedding is not possible (for exam-
ple, due to unavailability of resources), the local con-
troller notifies the central controller. Subsequently, the
partition allocation module will attempt to find an-
other data center able to embed the rejected partition.
It is worth noting that different resource allocation
schemes can be deployed locally at the data centers
(e.g., VDC planner [4], SecondNet [5], Oktopus [2]).
Finally, each local controller has to report periodically
statistics including PUE, temperature, resource usage
and availability of renewables to the central controller.

4 PROBLEM FORMULATION

In this section, we formally define the VDC em-
bedding problem across multiple data centers as an
Integer Linear Program (ILP). Table 1 describes the
notations used in our ILP model.

We assume that time is divided into slots [1, .., T ].
The metrics characterizing each data center (e.g., PUE,
electricity price) are measured at the beginning of
each time slot and are considered constant during
the corresponding time slot. Thus, for readability, we
omit the time reference in all variables defined in the
remainder of this section.

The physical infrastructure is represented by a
graph G(V ∪W,E), where V denotes the set of data
centers and W the set of nodes of the backbone net-
work. The set of edges E represents the physical links
in the backbone network. Each link is characterized by
its bandwidth capacity and propagation delay.

A VDC request j is represented by a graph
Gj(V j , Ej). Each vertex v ∈ V j corresponds to a
VM, characterized by its CPU, memory and disk
requirements. Each edge e ∈ Ej is a virtual link
that connects a pair of VMs. It is characterized by
its bandwidth demand bw(e) and propagation delay

TABLE 1: Table of notations

Notation Meaning
PUEi PUE of data center i
ζi Electricity price in data center i
ηi on-site renewable power cost in data center i
N i Residual renewable power in data center i
Ci Carbon footprint per unit of power from the power

grid in data center i
αi Cost per ton of carbon in data center i

zjik A boolean variable indicating whether data center i
satisfies the location constraint of VM k of VDC j

xj
ik A boolean variable indicating whether VM k is

assigned to data center i
fe,e′ a boolean variable indicating whether the physical

link e ∈ E is used to embed the virtual link e′ ∈ Ej

Dj
i Cost of embedding the VDC request j in data center

i
Pi,IT Amount of power consumed only by IT equipment

(i.e., servers and switches) in data center i

P j
i Total power consumed in data center i

σr Price per unit of resource type r

σb Price per unit of bandwidth
cp Cost per unit of bandwidth in the backbone network

d(e). Furthermore, each VDC j has a lifetime Tj . We
assume the revenue generated by VDC j, denoted by
Rj , to be proportional to the amount of CPU, memory
and bandwidth required by its VMs and links. Let
R denote the different types of resources offered by
each node (i.e., CPU, memory and disk). The revenue
generated by VDC j can be written as follows:

Rj = (
∑
v∈V j

∑
r∈R

Cr
j (v) × σr +

∑
e′∈Ej

bw(e′) × σb) (1)

where Cr
j (v) is the capacity of VM v belonging to the

VDC j in terms of resource r, and σr and σb are the
selling prices of a unit of resource type r and a unit
of bandwidth, respectively.

Furthermore, we assume that each VM v ∈ V j may
have a location constraint. Therefore, it can only be
embedded in a particular set of data centers. To model
this constraint, we define

zjik =

⎧⎨
⎩

1 If the VM k of the VDC j can be
embedded in data center i

0 Otherwise.

as a binary variable that indicates whether a VM k of
to VDC j can be embedded in a data center i.

The problem of embedding a given VDC j across
the infrastructure involves to two steps:

• First, assign each VM k ∈ V j to a data center.
Hence, we define the decision variable xj

ik as:

xj
ik =

⎧⎨
⎩

1 If the VM k of the VDC j is
assigned to data center i

0 Otherwise.

• Second, embed every virtual link belonging to Ej

either in the backbone network if it connects two
VMs assigned to different data centers or within
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the same data center, otherwise. To do so, we
define the virtual link allocation variable fe,e′ as:

fe,e′ =

⎧⎨
⎩

1 If the physical link e ∈ E is used to
embed the virtual link e′ ∈ Ej

0 Otherwise.

Finally, the ultimate objective of the InP when em-
bedding a VDC request is to maximize its profit de-
fined as the difference between the revenue (denoted
by Rj) and the total embedding cost, which consists
of the embedding cost in the data centers (denoted by
Dj) plus the embedding cost in the backbone network
Pj . Hence, our problem can be formulated as an ILP
with the following objective function:

Maximize Rj − (Dj + Pj) (2)

Subject to the following constraints (3)-(8):
• A VM has to be assigned to a data center that

satisfies its location constraints:

xj
ik ≤ zjik, ∀k ∈ V j , ∀i ∈ V (3)

• A VM is assigned to one and only one data center:∑
i∈V

xj
ik = 1, ∀k ∈ V j (4)

• The capacity constraint of the backbone network
links should not be exceeded:∑

e′∈Ej

fe,e′ × bw(e′) ≤ sbw(e), ∀e ∈ E (5)

where sbw(e) is the residual bandwidth of the
backbone network link e.

• The required propagation delay for every virtual
link allocated in the backbone should be satisfied:∑

e∈E

fe,e′ × d(e) ≤ d(e′), ∀e′ ∈ Ej (6)

• The flow conservation constraint given by:

fe1,e′ − fe2,e′ = xd(e1)d(e′) − xs(e2)s(e′),

∀e1, e2 ∈ E, d(e1) = s(e2), ∀ e′ ∈ V j (7)

where s(e) and d(e) denote the source and desti-
nation of link e, respectively.

• Furthermore, the central controller should also
ensure that each data center is able to accom-
modate VMs and virtual links assigned to it. To
model this constraint, let Gj

i (V
j
i , E

j
i ) denote a

partition from Gj , where V j
i and Ej

i are the set
of VMs and virtual links belonging to VDC j and
assigned to data center i. They can be written as

V j
i = {k ∈ V j |xj

ik = 1}
Ej

i = {e′ ∈ Ej |s(e′) ∈ V j
i and d(e′) ∈ V j

i }
We define the function

Embedi(G
j
i ) =

⎧⎨
⎩

1 If data center i can
accommodate V j

i and Ej
i

0 Otherwise.

Hence, to ensure that the data center i can host
the assigned VMs and links, we should satisfy:

xj
ik ≤ Embedi(G

j
i ), ∀k ∈ V j , ∀i ∈ V (8)

Let us now focus on the expression of the embed-
ding costs Dj and Pj in the data centers and the
backbone network, respectively. Recall that these costs
are part of the objective function.

- The cost of embedding in the data centers
In this work, we evaluate the request embedding

cost in the data centers in terms of energy and carbon
footprint costs. To do so, we first evaluate the amount
of power required to embed the partition Gj

i in a data
center i denoted by P j

i .
Let P j

i,IT denote the amount of power consumed
only by IT equipment (i.e., servers and switches) in
order to accommodate Gj

i (expressed in kilowatt). This
amount of power depends mainly on the local alloca-
tion scheme, the current mapping and the availability
of resources at data center i. The power consumed
at the data center i by IT equipment and other sup-
porting systems (e.g., cooling) to accommodate the
partition Gj

i can be computed as

P j
i = P j

i,IT × PUEi (9)

where PUEi is the power usage effectiveness of data
center i. The mix of power used in data center i is
given by

P j
i = P j

i,L + P j
i,D (10)

where P j
i,L and P j

i,D denote, respectively, the on-
site consumed renewable power and the amount of
purchased power from the grid. Note that the amount
of on-site consumed power should not exceed the
amount of produced power, which is captured by
P j
i,L ≤ RNi, where RNi is the amount of residual re-

newable power in data center i expressed in kilowatt.
Hence, the embedding cost (expressed in dollar) of

the partition Gj
i in data center i can be written as

Dj
i = P j

i,L × ηi + P j
i,D × (ζi + αiCi) (11)

where ηi is the on-site renewable power cost in
data center i expressed in dollars per kilowatt-hour
($/kWh), ζi is the electricity price in data center i
expressed in dollars per kilowatt-hour ($/kWh), Ci is
the carbon footprint per unit of power used from the
grid in data center i expressed in tons of carbon per
kWh (t/kWh) and αi is the cost per unit of carbon
($/t). Note that ηi includes the upfront investment,
maintenance and operational costs.

Finally, the total embedding cost of request j in all
available data centers can be written as follows :

Dj =
∑
i∈V

Dj
i (12)

- The cost of embedding in the backbone network
Virtual links between the VMs that have been as-

signed to different data centers should be embedded
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in the backbone network. Let Pj denote the cost
incurred by the InP in order to accommodate those
virtual links. We assume that it is proportional to their
bandwidth requirements and the length of physical
paths to which they are mapped. It is given by:

Pj =
∑

e′∈Ej

∑
e∈E

fe,e′ × bw(e′)× cp (13)

where cp is the cost incurred by the InP per unit of
bandwidth allocated in the backbone network.

The above embedding problem can be seen as
a combination of the bin packing problem and
the multi-commodity flow problem, which are both
known to be NP-hard. In addition, in order to use
an ILP solver, one should know the embedding costs
of all possible partitions of the VDC graph in all data
centers. This means that each local controller has to
provide the central management framework with the
embedding cost of every possible partition. This may
result in a large computational overhead not only at
local controllers but also at the central controller since
the number of possible partitions can be significant,
especially for large-scale VDC requests. Therefore, a
solution that is both efficient and scalable is required.

In the next section, we present our solution that,
first, divides the VDC request into partitions such
that the inter-partition bandwidth is minimized. Note
that minimizing the inter-partition bandwidth aims
at reducing the bandwidth usage within the back-
bone network. Once, the partitioning is completed,
we, then, use a greedy algorithm that places the
obtained partitions in data centers based on location
constraints and embedding costs that consider energy
consumption, carbon footprint, electricity prices and
PUEs of the different facilities. Finally, the algorithm
optimally connects them through virtual links across
the backbone network.

5 VDC PARTITIONING AND EMBEDDING

As mentioned earlier, our solution consists of two
stages: (1) VDC partitioning, and (2) partition embed-
ding. In the following, we present these two stages.

5.1 VDC Partitioning
Before starting the embedding process, the VDC parti-
tioning module splits the VDC request into partitions
such that the inter-partition bandwidth is minimized.
This allows to minimize the bandwidth usage inside
the backbone network.

Our motivation stems from two main observations:
(i) the cost of inter-data center network accounts for
15% of the total cost, which is much higher than the
cost of the intra-data center network [7], (ii) wide-area
transit bandwidth is more expensive than building
and maintaining the internal network of a data center
[26], and (iii) the inter-data center network might
become a bottleneck, which will eventually reduce the

Algorithm 1 Location-Aware Louvain Algorithm (LALA)

1: IN: Gj(V j , Ej): The VDC request to partition
2: repeat
3: Put every edge of G in a single partition
4: Save the initial modularity
5: while Nodes moved between partitions do
6: for all v ∈ Gj do
7: Find the partition P such as if we move v from its

partition to P :
8: -Get a maximum modularity increase
9: -There will not be two nodes with different location

constraints in P
10: if such a partition P exists then
11: Move v to the partition P
12: end if
13: end for
14: end while
15: if current modularity > initial modularity then
16: End ← false
17: Change Gj to be the graph of partitions
18: else
19: End ← true
20: end if
21: until End

acceptance ratio of VDC requests. Hence, to reduce
the operational costs and avoid inter-data center even-
tual bottleneck, it is highly recommended to reduce
the inter-data center traffic [8].

The VDC partitioning problem reduces to the
weighted graph partitioning problem, which is known
to be NP-Hard [27]. Hence, we propose to use the
Louvain algorithm [28]. We chose the Louvain algo-
rithm because it is a heuristic algorithm that deter-
mines automatically the number of partitions and has
low time complexity of O(n log n). Furthermore, it is
shown to provide good results [28].

The objective of the Louvain algorithm is to max-
imize the modularity, which is defined as an index
between −1 and 1 that measures the intra-partition
density (i.e., the sum of the links’ weights inside
partitions) compared to inter-partition density (sum
of the weights of links between partitions). In fact,
graphs with high modularity have dense connections
(i.e., high sum of weights) between the nodes within
partitions, but sparse connections across partitions.

In a nutshell, the original Louvain algorithm pro-
ceeds as follows. Initially, every node is considered as
a partition. The algorithm then considers each node
and tries to move it into the same partition as one of
its neighbors. The neighboring node is chosen such
that the gain in modularity is maximal. Then a new
graph is built by considering the partitions found
during the first phase as nodes and by collapsing
inter-partitions links into one link (the weight of the
new link is equal to the sum of the original links’
weights). The same process is applied recursively to
the new graph until no improvement in the modular-
ity is possible. For more details on the original version
of the Louvain algorithm, please refer to [28].

However, one should note that this algorithm is not
directly applicable to the VDC partitioning problem
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Algorithm 2 Greedy VDC Embedding Across data centers

1: IN: G(V ∪W,E), Gj
M (V j

M , Ej
M )

2: OUT: Assign each partition in V j
M to a data center, embed the

links between the partitions assigned to different data centers
in the backbone network

3: for all i ∈ V do
4: ToDC[i] ← {}
5: end for
6: for all v ∈ V j

M do
7: Sv ← {i ∈ V / i satisfies the location constraint}
8: end for
9: for all v ∈ V j

M do
10: i ← s ∈ Sv with the smallest cost getCost(s, v), and

LinksEmbedPossible(s, v) = true
11: if no data center is found then
12: return FAIL
13: end if
14: ToDC[i] ← ToDC[i] ∪ {v}
15: for all k ∈ N(v) do
16: if k ∈ ToDC[i] then
17: ToDC[i] ← ToDC[i] ∪ {evk}
18: else
19: if ∃l �= i ∈ V / k ∈ ToDC[l] then
20: Embed evk in G using the shortest path
21: end if
22: end if
23: end for
24: end for
25: return ToDC

since it does not take into account location constraints.
Indeed, two VMs with two different location con-

straints should not be assigned to the same data
center, and hence they have to belong to different
partitions. However, the Louvain algorithm may not
separate them, which results in non-feasible solutions.
To address this limitation, we modified the Louvain
algorithm to take into account location constraints
in the partitioning process. The resulting heuristic
algorithm, called Location-Aware Louvain Algorithm
(LALA) is described in Algorithm 1. Basically, LALA
prevents moving a node from one partition to another
whenever the location constraint could be violated.

Note that, unlike previous approaches in the lit-
erature, where the number of partitions is known
[10] or based on star-shaped structures detection [29],
LALA determines the number of partitions as well
as the shape and size of the partitions based on the
modularity.

Once the VDC partitioning is completed, the second
step is to assign the partitions to the data centers
in such a way to minimize the operational costs as
well as the carbon footprint, and provision virtual
links across the backbone network to connect them.
In what follows, we describe the partition placement
algorithm.

5.2 Partition Embedding problem

Once a request Gj(V j , Ej) is partitioned, the resulting
partitions that are connected through virtual links can
be seen as a multigraph Gj

M (V j
M , Ej

M ) where V j
M is the

set of nodes (partitions) and Ej
M is the set of virtual

links connecting them. The next step is to embed this
multigraph in the infrastructure.

Note that, at this stage, we can use the ILP formu-
lation introduced in section 4 by replacing the VDC
request Gj by its graph of partitions Gj

M . However,
even if the VDC partitioning process significantly
reduces the number of components (partitions rather
than VMs) to be embedded, the above formulated ILP
is still NP-hard. Therefore, we propose a simple yet
efficient heuristic algorithm to solve the ILP problem.

Algorithm 2 describes the proposed partition em-
bedding algorithm. For each partition v ∈ V j

M , we
build the list of data centers able to host it based on
the location constraints (lines 6-8). The idea is to start
by assigning the location-constrained partitions first
then select the most cost effective data centers that
satisfy these constraints. For each partition v ∈ V j

M

to embed, the central management entity queries the
Local Controller of each data center s that satisfies the
location constraints to get the embedding cost of v.
The cost is returned by the remote call getCost(s, v),
which includes both power and carbon footprint costs
as described in equation (11). The next step is to select
the data center that will host the partition v (lines 10-
14). The selected data center is the one that incurs the
lowest embedding cost (provided by the procedure
getCost(s, v)) and where it is possible to embed vir-
tual links between v and all previously embedded par-
titions (denoted by N(v)). Hence, the requirements of
all virtual links in terms of bandwidth and delay are
satisfied (achieved when LinksEmbedPossible(s, v) =
true). Furthermore, links between the partition v and
other partitions assigned to different data centers are
embedded in the backbone network using the shortest
path algorithm (lines 19-21).

If the whole multigraph is successfully embedded,
Algorithm 2 provides the mapping of all the par-
titions to the data centers as well as the mapping
of the virtual links that connect them in the the
backbone network. The complexity of this algorithm is
O(|V j

M |× |V |), where |V j
M | is the number of partitions

and |V | is the number of data centers.

6 PERFORMANCE EVALUATION

In order to evaluate the performance of Greenhead,
we run extensive simulations using realistic topology
and parameters. In the following, we present the
setting of the conducted simulations, the performance
metrics that we evaluated as well as the obtained
results.

6.1 Simulation Settings
- Physical infrastructure:

We consider a physical infrastructure of 4 data
centers situated in four different states: New York,
Illinois, California and Texas. The data centers are con-
nected through the NSFNet topology as a backbone
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(d) Texas

Fig. 3: Available renewables, electricity price, carbon footprint per unit of power and cost per unit of carbon
in the data centers

network [30]. NSFNet includes 14 nodes located at
different cities in the United States. Each data center
is connected to the backbone network through the
closest node to its location. We assume all NSFNet
links have the same capacity of 10Gbps [8], [31]. As
illustrated in Fig. 3, the electricity price, the available
renewable energy and the carbon footprint per unit
of power drawn from the grid not only depends on
the location but are also subject to change over time.

In our experiments, we simulate two working days
(i.e., 48 hours). We use electricity prices reported by
the US Energy Information Administration (EIA) in
different locations [32]. The amount of power gener-
ated during two days are extracted from [33]. In order
to evaluate the carbon footprint generated at each data
center, we use the values of carbon footprint per unit
of power provided in [34]. We also use real solar and
wind renewable energy traces collected from different
US states [33], and considered the on-site renewable
power cost to be ηi = 0.01/kWh, ∀i [35], [36]. In order
to evaluate PUEs of the different data centers, we
adopted the technique described in [37].

- VDC requests:
In our simulations, similarly to previous works

[4], [11]–[13], [16], VDCs are generated randomly
according to a Poisson process with arrival rate λ.
Their lifetime follows an exponential distribution with
mean 1/μ. This mimics a real cloud environment
where VDCs could be allocated for a particular lapse
of time depending on the SP requirements. This is
the case for Amazon EC2, for example, where a SP
can dynamically create VMs and use them only for
a specific duration. The number of VMs per VDC is
uniformly distributed between 5 and 10 for small-
sized VDCs and 20 and 100 for large-sized VDCs.
Two VMs belonging to the same VDC are directly
connected with a probability 0.5 with a bandwidth de-
mand uniformly distributed between 10 and 50Mbps
and a delay uniformly distributed between 10 and
100 milliseconds. In addition, in each VDC, a fraction
of VMs, denoted by Ploc ∈ [0, 1], is assumed to have
location constraints.

- The baseline approach:
Since, previous proposals on virtual network em-

bedding and VDC embedding are not directly ap-

plicable to the studied scenario (see Section 2), we
developed a baseline embedding algorithm that does
not consider VDC partitioning. The baseline algorithm
maps a VDC to the physical infrastructure by embed-
ding its VMs and links one by one. In other words,
it applies the Greenhead embedding algorithm, while
considering each single VM as a partition.

- The simulator
We developed a C++ discrete event simulator for

the central and local controllers, consisting of about
3000 lines of code. The exchange between the central
controller and the local controllers is implemented
using remote procedure calls. The results are obtained
over many simulation instances for each scenario,
with a margin of error less than 5%, then we calculate
the average value of performance metrics. We do not
plot confidence intervals for the sake of presentation.

- Performance Metrics
In order to compare our approach to the baseline,

we evaluate several performance metrics including
the acceptance ratio, the revenue, energy costs, the
carbon footprint and the backbone network utiliza-
tion. In particular, the acceptance ratio is defined as
the ratio of the number of embedded VDCs to the total
number of received VDCs (i.e., including embedded
and rejected VDCs). It is given by:

At =
Ut

Nt
(14)

where Ut and Nt are the number of VDC requests
that have been embedded and the total number of
received VDCs up to time t, respectively. The instan-
taneous revenue at a particular time t is given by:

R(t) =
∑

j∈Q(t)

Rj (15)

where Q(t) is the set of VDC requests embedded in
the infrastructure at time t and Rj as defined in (1).
The cumulative revenue up to time t, denoted by
CR(t), can then be written as:

CR(t) =

∫ t

0

R(x) dx. (16)

The instantaneous power, carbon footprint and
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Fig. 5: Greenhead vs the baseline. (λ = 8 requests/hour, 1/μ = 6 hours, Ploc = 0.15, duration=48 hours)

backbone network cost is given by:

C(t) =
∑

j∈Q(t)

Dj
t + Pj (17)

where Dj
t is defined in (12). Note that we add

the time slot in the subscript to the definition of the
Dj

t since we are considering the variations between
different time slots. The cumulative cost up to time t
can be written as:

CC(t) =
∫ t

0

C(x) dx. (18)

Naturally, the instantaneous and cumulative profits
are given by the difference between the instantaneous
revenue and cost and the cumulative revenue and
cost, respectively.

Finally, in order to compare Greenhead resource
allocation scheme to other schemes, we define the
cumulative objective function at time t as the sum
of objective function values associated to the VDCs
embedded at that time. It can be written as

B(t) =
∑

j∈Q(t)

(Rj − (Dj + Pj)) (19)

where Rj− (Dj+Pj) is the objective function score
of embedding VDC j as defined in equation (2).

6.2 Simulation results
Through extensive experiments, we first show the
effectiveness of our framework in terms of time
complexity, acceptance ratio, revenue and backbone
network utilization. Then, we study the utilization
of available renewable energy in the different data
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Fig. 4: Cumulative objective function obtained with Greenhead,
the baseline and the ILP solver

centers. Finally, we investigate the carbon footprint
and we discuss how to spur development of green
infrastructure.

1) Greenhead provides near-optimal solution
within a reasonable time frame

First, we compare Greenhead to an optimal solution
provided by an ILP solver, as well as to the baseline
in terms of computational time and solution quality
(i.e., cumulative objective function). In our first set of
simulations, we fixed the arrival rate λ to 8 requests
per hour, the average lifetime 1/μ to 6 hours and the
fraction of location-constrained VMs Ploc to 0.15. The
experiments were conducted on a machine with a 3.4
GHz dual core processor and 4.00 GB of RAM running
Linux Ubuntu. To compute the optimal solution, we
developed a C++ implementation of the branch-and-
bound algorithm.

Fig. 4 compares the cumulative objective function
(equation (19)) of the aforementioned algorithms for
small-sized VDC requests consisting of fully con-
nected 5-10 VMs. We can observe that the mean
values obtained for Greenhead are very close or even
overlap with the values obtained with the ILP solver.
This means that the Greenhead approach provides a
solution close to the optimal one. We can also see
that Greenhead improves the cumulative objective
function value by up to 25% compared to the baseline.

Table 2 reports the average computation time
needed to partition and embed a VDC request. The
results show that Greenhead takes a very short time
to partition and embed a VDC request (less than
one millisecond for small-sized VDCs and up to 31
millisecond for larger VDCs). On the other hand, the
ILP solver takes more than 13 seconds for small-
sized VDCs. The Baseline, however, needs the least
computation time since no partitioning is performed.
Note that the results for the optimal solution in large-
sized VDCs were not reported since the solver was
not able to find the optimal solution due to memory
outage.

2) Improve backbone network utilization, accep-
tance ratio and revenue

In the second set of experiments, we compare
Greenhead to the baseline approach in terms of ac-
ceptance ratio, instantaneous revenue and backbone
network utilization. To do so, we, first, fixed the
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Fig. 7: Impact of the fraction of location-constrained VMs. (λ = 8 requests/hour)

TABLE 2: Computation time for Greenhead, the base-
line and the ILP solver (in milliseconds)

VDC Greenhead Baseline ILP
size Partitioning Embedding Total Solver

5-10 VMs 0.214 0.061 0.275 0.079 13540
20-100 VMs 31.41 0.28 31.69 2.2 -
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Fig. 6: Acceptance ratio and revenue for different
arrival rates (Ploc = 0.10)

arrival rate λ to 8 requests per hour, the average
lifetime 1/μ to 6 hours and the fraction of location-
constrained VMs Ploc to 0.15, and we simulated the
infrastructure for 48 hours. Results are illustrated
in Fig. 5. From this figure, we can see that Green-
head achieves, on average, 40% higher acceptance
ratio than the baseline (Fig. 5(a)) and up to 100%
more instantaneous profit (Fig. 5(b)). Although both
schemes lead to almost the same utilization of the
backbone network on average (Fig. 5(c)), they differ
in the fact that Greenhead avoids embedding virtual
links with high bandwidth demand in the backbone
network thanks to the partitioning algorithm. Hence,
it ensures that the embedded requests consume as
less bandwidth as possible inside the backbone net-
work. This is confirmed by Fig. 5(d), which compares
the average used bandwidth per request inside the
backbone network for both schemes. It is clear that
requests embedded by Greenhead use on average 40%
less bandwidth in the backbone network than the
baseline algorithm.

Fig. 6 and 7 show the performance results when
varying the arrival rate λ and Ploc, respectively.

From Fig. 6, we can notice that as the arrival rate
increases, more requests are embedded, which results
in higher revenue. At the same time, the acceptance

ratio goes down since there is no room to accept all the
incoming requests. It is also clear from this figure that
the acceptance ratio as well as the revenue are always
higher for Greenhead compared to the baseline.

However, this benefit is reduced when Ploc = 0 as
shown in Fig. 7. In fact, when there are no location
constraints, the VDCs can be hosted in any data
center, and hence, their placement is only driven by
the availability of renewables, the electricity price and
the carbon footprint. In practice, if the data centers are
not overloaded, any particular VDC is entirely hosted
in the same data center. This results in low backbone
network utilization as shown in Fig. 7(c). On the other
hand, when Ploc = 1, all the VMs have to be placed as
required by the SP. As a result, the Greenhead is not
able to perform any optimization. Finally, when the
fraction of the constrained VMs is between 0 and 1,
the Greenhead has more freedom to decide of the non-
constrained VMs placement. In this case, Greenhead
is able to optimize VDCs allocation and significantly
improve the acceptance ratio and revenue compared
to the baseline.
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Fig. 8: Power consumption across the infrastructure
(λ = 8 requests/hour, Ploc = 0.20)

3) Maximize renewables’ usage
To illustrate how our proposed framework exploits

the renewables in the different data centers, we stud-
ied the power consumption across the infrastructure
and particularly the usage of renewable energy. Fig.
8 shows the total power consumption across the
infrastructure for both Greenhead and the baseline
approach. It is clear from this figure that Greenhead
consumes much more power than the baseline since
it accepts more VDC requests. We can also see that
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Fig. 9: The utilization of the renewables in all data centers for different fractions of location-contained nodes
Ploc for Greenhead (λ = 8 requests/hour)

it uses up to 30% more renewable power than the
baseline.

Fig. 9 shows the impact of the fraction of location-
constrained VMs on the power consumption across
the infrastructure. We can notice that, as the fraction
of constrained nodes increases, Greenhead uses more
power from the grid. For instance, with Ploc = 0,
Greenhead uses 100% of available renewables. How-
ever, when Ploc is getting higher, up to 15% of the
available renewables are not used. This is due to the
fact that the VMs with location constraints can only
be embedded in specific data centers, which may not
have available renewables. Consequently, more power
is drawn from the grid.

4) Reduce energy consumption and carbon foot-
print per request.

Fig. 10 compares the obtained results for both
schemes for all studied metrics. We can observe that
Greenhead improves up to 40% the acceptance ratio
which translates into 48% more profit. Furthermore,
Greenhead uses up to 15% more renewables and
reduces the consumed power per request by 15%
compared to the baseline approach. In addition, we
can notice that, while Greenhead boosts significantly
the profit up to 48%, it generates the same amount of
carbon footprint compared to the baseline approach.
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different metrics

5) Green infrastructure is possible through tuning,
at the expense of power cost.

Finally, Fig. 11 shows the impact of varying the cost
per unit of carbon (αi = α, ∀i ∈ V ) on the carbon
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Fig. 11: The carbon footprint (normalized values) of
the whole infrastructure with variable cost per ton of
carbon

footprint in the whole infrastructure as well as the
total power cost. In this experiment, λ is set equal to
8 request/hour and Ploc equal to 0.1. From this figure,
we can see that a tradeoff between the carbon foot-
print and the power cost can be achieved. In addition,
we can notice that an InP can set a carbon footprint
target to reach by choosing the corresponding value
of α. For instance, one can reduce the carbon footprint
by 12% while increasing the power cost by only 32%
by setting α to 80 $/t.

It is worth noting that nowadays, the carbon cost is
imposed by governments as a carbon tax whose cost
is between 25 and 30 $ [38]–[40]. According to Fig. 11,
such a cost is not enough to force InPs to reduce their
carbon footprint.

To explain the power cost increase when reduc-
ing the carbon footprint, let’s explore Fig. 12, which
presents the power consumption in different data
centers. From this figure, we can notice that for small
values of α (i.e., α ≤ 160 $), Greenhead uses more
the data centers in Illinois and New York. These
two data centers have low electricity prices (see Fig.
3) but high carbon footprint (0.0006 ton/Kwh and
0.0005 ton/Kwh, respectively). However, as α in-
creases, Greenhead uses the data center in California
since it has the smallest carbon footprint per unit of
power (0.0003 ton/Kwh) but a higher electricity price
(on average, 100% higher compared to New York data
center).

Consequently, we can conclude that: (i) to reduce
data centers’ carbon footprint, governments should
consider much higher carbon taxes, and (ii) using
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Greenhead, a socially-responsible InP should consider
higher carbon costs, even by artificially increasing
these costs, to force Greenhead to use environment-
friendly data centers to reduce the carbon footprint.
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Fig. 12: The power from the grid (normalized values)
used in different data centers with variable cost per
ton of carbon α

7 CONCLUSIONS

The last few years witnessed a massive migration
of businesses, services and applications to the cloud.
Cloud providers take advantage of the worldwide
market to deploy geographically distributed infras-
tructures and enlarge their coverage. However, multi-
ple data centers consume massive amounts of power.
Furthermore, their carbon footprint is a rapidly grow-
ing fraction of total emissions. In this paper, we
proposed Greenhead, a holistic resource management
framework for embedding VDCs across a geograph-
ically distributed infrastructure. The goal of Green-
head is to find the best trade-off between maxi-
mizing revenue, reducing energy costs and ensuring
the environmental friendliness of the infrastructure.
The key idea of the proposed solution is to conquer
the complexity of the problem by partitioning the
VDC request based on the bandwidth requirements
between the VMs. The partitions and the virtual links
connecting them are then dynamically assigned to the
infrastructure data centers and backbone network in
order to achieve the desired objectives.

We conducted extensive simulations for four data
centers connected through the NSFNet topology. The
results show that Greenhead provides near-optimal
solution within a reasonable computational time
frame and improves requests’ acceptance ratio and
InP revenue by up to 40% while ensuring high us-
age of renewable energy and minimal footprint per
request.
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