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Abstract—Cloud computing promises to provide computing (QoS) for their applications. Moreover, the InP can makeemor
resources to a large number of service applications in an on- informed decisions for traffic engineering given VDC-sffieci

demand manner. Traditionally, cloud providers such as Amazon {afic requirements, which eases the burden for network
only provide guaranteed allocation for compute and storage '
management.

resources, and fail to support bandwidth requirements and o ) o -
performance isolation among these applications. To address this However, despite its benefits, designing an efficient ressour
limitation, recently, a number of proposals advocate providing management scheme for VDCs is a challenging problem. One
both guaranteed server and network resources in the form of the key challenges is théDC embedding problem, which

of Virtual Data Centers (VDCs). This raises the problem of consists in mapping VDC components (e.g., virtual machines

optimally allocating both servers and data center networks to . . . . .
multiple VDCs in order to maximize the total revenue, while virtual switches and links) onto physical nodes and linkenf

minimizing the total energy consumption in the data center. an InP’s perspective, the goal is to adopt efficient allarati

However, despite recent studies on this problem, none of the schemes to maximize the net income while satisfying the
existing solutions have considered the possibility of using VM resource requirements (CPU, memory, disk and bandwidth)
migration to dynamically adjust the resource allocation, in order of each embedded VDC. This can be divided into several

to meet the fluctuating resource demand of VDCs. . L .
In this paper, we propose VDC Planner, a migration-aware inter-dependent objectives: (1) maximizing the total rewe

dynamic virtual data center embedding framework that aims Obtained from the embedded VDC requests, (2) minimizing
at achieving high revenue while minimizing the total energy request scheduling (i.e., queuing) delay, which refershto t
cost over-time. Our framework supports various usage scenar®)  time a request spends in the waiting queue before it is sched-
including VDC embedding, VDC scaling as well as dynamic VDC uled, and (3) minimizing the total energy consumed by the

consolidation. Through experiments using realistic workload dat ter. Th heduling delav i ) tant f
traces, we show our proposed approach achieves both higher ata center. 1he scheduling delay IS an important pertocean

revenue and lower average scheduling delay compared to existing Metric not only because it concerns the responsivenessof th

migration-oblivious solutions. cloud data center to demand fluctuations, but also because it
affects the performance of cloud applications (e.g., nugni
. INTRODUCTION time of MapReduce jobs) [18]. It is noteworthy that VDC

Cloud computing is a model that promises to allocatembedding is aoV‘P-hard problem as it generalizes the bin-
resources to large-scale service applications in an oraddm packing problem.
fashion. In a cloud computing environment, the traditicnodg To make the matter worse, InPs can offer more flexibility
of service providers is divided into two: Thafrastructure to SPs by allowing them to scale up and down their VDCs
Providers (InPs) own the physical resources in data centems¢cording to their needs. For instance, a SP can ask for an
and lease them using a pay-as-you-go pricing model, while timcrease of the VDC capacity in terms of VMs and virtual
Service Providers (SP) rent the resources offered by InPs arlihks to accommodate rapid increase in service demand. It
provide services t@nd users over the Internet. Traditionally, can also reduce the size of its VDC during idle periods
InPs offer resources in terms of Virtual Machines (VMs), antb save resource rental cost. Although flexibility is a key
ignore network requirements imposed by the services rgnniadvantage of cloud computing, previous works related to VDC
in these VMs. This has led to a number of issues regardiegnbedding do not focus on the management of such re-
network performance, security and manageability [3]. scaling operations. Yet, scaling up embedded VDCs is not

To address these limitations, recent research proposads hiivial. For example, a SP may wish to increase the bandwidth
advocated to offeMrtual Data Center (VDCs) instead of allocation for a given embedded VM but the physical machine
VMs [10], [2]. A VDC consists of virtual machines (VMs) that hosts this VM may not have sufficient free bandwidth
connected through virtual switches, routers and links witle support this operation. On the other hand, scaling down
guaranteed bandwidth. Compared to traditional VM-basemnbedded VDCs is an opportunity to reduce operational costs
offerings, selling resources in the form of VDCs allows SP& particular, scaling down VDCs reinforces interest of VM
to achieve better performance isolation and Quality of Berv consolidation algorithms [13], [12], [19], [16], [17], wtt



aim at maximizing the utilization of active machines whild@opologies. However, both SecondNet and Oktopus do not
allowing idle machines to be turned off. consider the cost of VM migration in their resource allogati

To accommodate flexibility in VDC embedding, a simplalgorithms. Furthermore, none of them have consideredygner
yet common solution is to re-embed the VDC from scratotonsumption in their embedding decisions.
(e.g., [4]). This solution can however result in disrupting The VDC embedding problem also shares many similarities
services supported by the VMs. A more promising solutiowith traditional virtual network (VN) embedding [7]. For
is to migrate some embedded VMs from a physical machimstance, Chowdhury et al. proposed algorithms that peovid
to another. However, migrating VMs has associated costsdaordinated embedding of both virtual nodes and links [6].
terms of service disruption and bandwidth usage. In pdaicu Butt et al. [8] studied the problem of topology-aware VN
migrating a VM can cause the VM to run at reduced speeeinbedding and re-optimization that leverages migratich-te
thereby violating the Service Level Agreement (SLA). Suchiques. However, VN embedding models differs from VDC
a violation is translated into a penalty that the InP has ®wmbedding in that they only consider CPU and network
pay. Hence, the InP must weigh the benefit and the cassources, whereas in VDC embedding other resources such
of a migration and make the right decision that minimizess memory and disk also need to be considered. Finally,
his overall costs. Previous works related to VM migratiominimizing energy consumption has not been addressed in
neither address VDC embedding, nor take into account all theisting VN embedding models.
parameters in terms of management, migration and impact orThere has been also a large body of work on VM migration
performance. schemes in data centers. For instance, Entropy [12] is a

To address the aforementioned challenges, we introduesource management framework that relies on VM migration
VDC Planner, a framework that supportsigration-aware to dynamically achieve server consolidation while meeting
virtual data center embedding. Migration is a key feature in requirements of all VMs in terms of processing and memory
VDC Planner: it is used to both improve VDC embeddingapacity. It models the optimal VM placement as a variant
capability and better support the scaling up and down of the vector bin-packing problem, and solves it by means of
requests. VDC Planner differs from previous work on VDEonstraint Satisfaction Programming (CSP). pMapper [$4] i
embedding mainly in the fact that it is migration-aware, anal dynamic server consolidation framework that takes into ac
uses migration to improve solution quality while minimigin count VM migration cost. It relies on greedy heuristics ttveo
total migration costs. In this perspective, we provide aegeh the optimal VM placement problem. However, both Entropy
formulation of the problem of embedding and scaling up/dowand pMapper have not considered network requirement and
VDC requests while considering the migration cost. To tha bdocality when making consolidation decisions. More rebgnt
of our knowledge, our formulation is the first one to consideéshrivastava et al. proposed AppAware [13], a network-aware
migration cost and multiple types of resources. VM migration scheme that minimizes the network distance

The rest of this paper is organized as follows. In Section Between communication-dependent VMs while minimizing
we survey recent research effort related to migration-awamigration costs. However, energy consumption is not censid
VDC embedding. We formulate the migration-aware VD@red in their framework. Wang et al. [15] studied the problem
problem in Section 3. Section 4 provides an overview aff VM consolidation with stochastic bandwidth demands and
VDC Planner and describes various usage scenarios and puaposed an online approximation algorithm for the problem
proposed algorithm for each of them. We demonstrate thl®wever, VM migration cost is not considered in their model.
effectiveness of VDC Planner in Section 5 and conclude thﬁl

paper in Section 6 M ODELS FORMIGRATION-AWARE VDC EMBEDDING

In this section, we present a mathematical formulation of
Il. RELATED WORK the embedding problem that considers migration. We first

Realizing that data center networks today do not providatroduce the general long-term model from the perspective
performance isolation between collocated service apfjics, an InP. Then, we present the model for the one-shot migration
there is an emerging trend towards virtualizing data centdware VDC embedding, which is applied upon the receival
networks to provide guaranteed network bandwidth to ea6h@ VDC request (either an initial embedding or a scale-up
service application. In this context, a key research chgtle request).
is to find scalable yet efficient resource allocation schemgs general Long-term Embedding Formulation
that simultaneously allocate both VMs and network resaurce o .
Recently a number of proposals have been put forth to addres a nutshell,. m|grat|on-a\_/vare VDC. embeddln.g.leverages
this challenge. In particular, SecondNet [10] is a dataeremm'grat'on techniques tp achieve _effectlv_e and efﬂment@la
network virtualization architecture that defines a virtdata et of VDCs over t'”‘_e- In this section, we |_ntroduce a
center as an abstraction for resource allocation in datwceﬁormal m.odellfor m_lgratu.)n—aware VDC Embedding. In our
environments. It provides a greedy heuristic for the VD%Odel’ time is divided into slots of equal durat’rori_gt
embedding problem. Similarly, Oktopus [2] proposed two' — (N, L) represents the data center network, whére
abstractions (virtual cluster and virtual oversubscriblester)  1ywe can adjust the length of time slots to simulate VDC embedding i
that can be allocated efficiently in tree-like data centéwonek continuous time.



consists of physical nodes (i.e., servers and switches)Iand. One-shot Migration-aware Embedding Formulation
represents physically links. Defing (¢) € {0,1} as a variable
that indicates whether physical nodec N is active, and di
pn € RT as the cost for using physical machineduring b
each time slot. For instancgy can be the energy cost. Thus
the total cost during time sldtcan be computed as

Since the optimal dynamic VDC embedding problem is

fficult to solve, it is necessary to break down the problem

ased on usage scenarios. In this section, we present alforma

model for one-shot migration-aware VDC embedding, whose

objective is to deal with either an initial embedding reduas

Ct) = Z Y (t)Dr (1) ascaling up request. Since we focus on one-shot embedding,
neN we can omit the notion of time in this model.

Let G — (N7, L) represent the VDC request where N' Specifically, given a data center netwak= (N, L), let R
is the set of virtual nodes anti’ represents the set of virtuald€note the different types of resources offered by each node

links. Let I, denote the set of VDC requests available at tH€-9- memory and CPU for servers). Assume each nodeV

end of the time slot. More specifically, defineD; as the set N2S @ capacity;, for each resource typec R, and each link

of VDC requests arrived during the time skotand L, as the ! € L has abandwidth capacity. Furthermore, every physical
set of VDC request that have left the system during the saifé ! has a source node and a destination node. We define

interval (e.g., due_ to request c_ompletior_w or withdrawalp W B 1 if 7 is the source of
can computel, using the following equation: "= N0 otherwise (6)
Iiyy = ;U D\ Ly (2) q
Define A; C I, as the set of running VDCs. Let,(t) € an
{0,1} be an integer variable that denotes whether N? has - 1 if n is the destination of
been migrated during time slot andg,, (t) denote the cost of Al = {0 otherwise (7)
this migration, the total migration cost during time stotan
be computed as as boolean variables that indicate whethes the source and
destination node of € L, respectively. Similarly, we assume
M) = Z Z i (£)gn (1) (3) there is a set of VDC requesis each request € I asks for
i€A nEN! embedding a VDG = (N*, L*). We also assume each node

Note that the migration cost is expressed as a penalty for the- i pas 3 capacityi” for resource type: € R, and each
service disruption caused by migration. Similar penalées |ink ; < 7,i has a bandwidth capacity. We defines,; and
applied in practice (e.g., penalty imposed to Amazon EC2 fgr a5 poolean variables that indicate whetheis the source
violating VM availability SLA) [1]. ~ and destination node dfe L¢, respectively
On the other hand, for each VDCe [;\4, thatis waiting | ot 4 ¢ 10,1} be a boolean variable that indicates
to be scheduled, we assume there is a penaly) that is \yhether virtual node: of VDC i is embedded in substrate
proportional to the request waiting delay. node 7i, and fi; € R* be a variable that measures the
Pt) = Z oi(t) 4) bandwidth of edge allocated for virtual link! € L*. To
€T\ Ar ensure no violation of the capacities of physical resoyrces

We also assume for each VDfCthere is a revenu&;(t) the following constraints must be satisfied:

earned_by the InP dL_lring time slatWe assume thaR,(t) is Z Z wi T < o Vie N.reR @)
proportional to a weighted sum of the total resources (CPU, ST s

memory, disk, bandwidth) used by VDCduring time slot ; o

t. Therefore, the objective of the InP is to maximize the Z Z fustr viel ©)

difference between the revenue and the costs, which inglude
migrations and energy costs, as well as penalties due W also require link embedding to satisfy the flow constraint

scheduling delays: between every source and destination node pairs in each VDC
1 X topology, formally:
max | lim — > (Z R,;(t)C(t)M(t)P(t))) o _ o o
(Tﬁoo T t=0 \i€A, - Z dutfi; + Z Satfp = Z TrnSnibl — Z T Ay bl
leL leL neN? neN?
However, this problem is intractable because it requirds so Viel,le L'ne N (10)

ing a multi-dimensional bin-packing problem dynamically

over time. Even the static version of the problem generslizelere }° _ . zis!, is equal tol if n is the source of the
the N'P-hard multi-dimensional bin-packing problem. Due tdink ! of VDC i and n is embedded in the physical node

its high complexity, it is not possible to solve the problenEquation 10 essentially states that the total outgoing flbw o
directly in a timely manner given the large number of phylsica physical node: is equal to the total incoming flow unless
machines and VDCs in typical production data centers. Fhere hosts either a source or a destination virtual node. Next, we

fore, a more scalable yet cost-effective solution is needed need to consider node placement constraints. We define



s 1 if noden of VDC i can be embedded in
"™ 10 otherwise

that indicates whether virtual node can be embedded in
physical noden. For example, VMs can only be embedded
in physical machines and not in switches. Thus, if a virtual
node n from VDC i is a virtual server, we have! .
0Vn € N, and! . = 1Va € N,, where N, and N,,, are the
sets of physical switches and physical machines, respbgctiv
(i.e., N = N,UN,,). The placement constraint describes also
whether a switch can be embedded exclusively in physical
switches or in physical servers or in both types of equipment

This constraint is captured by the following equation:
(12)
To ensure embedding of every virtual nodewe must have:
> =1 (13)
AEN
In our model, we also defing; as a boolean variable that
indicates whether physical nodeis active. A physical node
is considered active if it hosts at least one virtual nodas Th
implies the following constraints must hold:
yn > 1 VieI,ne NNne N
1 . ) o L
yﬁZb—lfl’ﬁﬁ; Viel,ne N,le L' lcL
1 -
Yn = Eflidﬁ[
Finally, we also consider the migration cost. In our formu-
lation, we treat migration cost asame-time embedding cost.

The one-time embedding cogt,, of a virtual noden of VDC
¢ in substrate node € N is given by:

11)

A
nn

xl < FL Viel,nenneN

VieI,ne N

(14)

Viel,n€ N,leL’ (16)
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Figure 1: VDC Planner Architecture

IV. VDC PLANNER

In order to reduce the complexity of the online VDC embed-
(15) ding problem, we have designed VDC Planner, a framework
that provides cost-effective VDC embedding in production
data centers. Instead of solving the online problem diectl
VDC Planner divides the overall problem into several usage
scenarios, such that each scenario can be solved effgctivel
and efficiently. We describe hereafter the overall architec
as well as our heuristic algorithms for each scenario.

mig(n,m,n) if n#m A. Architecture
I = 0 if n=m The architecture of VDC Planner is shown in Figure 1. It
0 if n is currently not embedded consists of the following components:

wheremig(n, m, i) denotes the cost of migrating virtual node *

n from substrate node: to substrate nodé. Thus, when a

virtual noden is already embedded in a physical nageand

needs to be migrated to , the one-time embedding cost is

equal to the migration cost. This cost is equal to zero when

is already embedded in the physical nodéi.e., m = n). It

is also zero when the nodeis embedded for the first time.
The ultimate goal of the migration-aware embedding can be

stated by finding an embedding that achieves .

min Z YnPn + Z Z Z VnTpmInas 17)
neEN i€l neENi ReN

subject to equations (8) - (16). Herg, is a weight factor that  «
captures the tradeoff between migration costs and opesdtio
costs. Even though the migration-aware embedding problem
is easier than the original online embedding problem, it is
still difficult to solve as it generalizes a multi-dimensabiipin
packing problem.

VDC Scheduler: Upon receiving a VDC request from

a SP, the VDC Scheduler is responsible for scheduling
the VDC on the available physical machines. If there is
no feasible embedding in data center, the request is kept
in a scheduling queue until the SP decides to withdraw
it. Different from existing VDC embedding algorithms,
our VDC scheduler leverages migration to improve the
revenue gain from embedding VDC requests.

Resource Monitor: The Resource Monitor is in charge of
monitoring the physical and virtual data centers. It also
notifies the VDC scheduler if a failure of any physical or
virtual node occurs in the data center.

VDC Consolidation Module: The VDC Consolidation
Module consolidates the VDCs over time in order to
reduce resource fragmentation (i.e., residual capacities
in physical machines and network components that are
not capable of scheduling any VDC components). VDC
consolidation improves the overall resource utilizatién o



fime , Our heuristic is depicted by Algorithm 1. Intuitively, upon
| receiving a VDC request the algorithm first sorts the physical
1 machines based on whether they are active or inactive. It
el i then sorts virtual nodes in the request based on their size.
R ! Specifically, for eachn € N*, we define its sizesize!, as
|
|
|
|
|
|

I
I
VDC 1 ,—¢ }
I
I
I
vDC2

Scaling up Scaling down

) _ roar
‘ size, = E w'ey, (18)

vDC 3 } |

|
!

|
|
|
|
|
|
|
! |
I T
|

|

|
I
l
} rER
Dynamic VDC Dym.m‘ac voe D_mmlmc wherew” is a weight factor for resource type The intuition
Consolidation Consolidaion Consolidation is that size!, measures the difficulty of embedding node
Figure 2: Scenarios for dynamic VDC embedding Accordingly, w" is selected based on the scarcity of resource
typer € R.
After sorting all virtual nodes iV* according tosize? , our

nl

the data center and maximizes the number of machin@gorithm then tries to embed each node in the sorted order,
that can be turned off. based on whether it is connected to any embedded nodes. For

Our strategy for reducing the complexity of migration—aﬁ'vareaCh selc_acted node € N* and each.physicalvnocﬁie €N,
pe algorithm computes the embedding castt*(n, ) as:

VDC embedding is to divide the overall problem into severzs

“scenarios”, such that each scenario can be easily addresse cost'(n,n) = -, (mig(n,m,n) + MigOther(n,@))
Figure 2 illustrates the scenarios we consider for VDC Réann n Z d(r,7) - b (19)
They can be described as follows: W)= O m)

o Initial VDC Embedding: A SP submits a new VDC ENTm el o _

request and the scheduler has to map it onto the physi&é]_ere the 'Iast term represents. the communlcatlon distance

data center. When the data center is heavily loaded, it méy’» ) weighted by the bandwidth requiremefyt, .., be-

be impossible to embed the VDC due to lack of spacBveen 7 and the other noder’ € N* that is embedded

In this case, VM migration can adjust previous resourc_Physical noden’. If a particular n’ is not embedded,

allocations in order to accommodate the new request. d(n’,7) is set to zero. The intuition here is to minimize the

VDC Scaling: A SP requests the topology of VDC tocommunicatiop distance be'tween virtual node; in order to

be dynamically scaled up and down. For example, reduce bandW|dth consumptlon. In the long run, it also alow

the SP runs a Web application in the data center aféPre Physical network devices to be turned off.

it experiences a demand spike, he can submit a requestinally, MigOther(n,n) is the cost of migrating away the

to increase the resource allocation of his VDC. MigratiofMs not belonging toG* on 7 in order to accommodate

can also be used to increase the chance of satisfying the®n 7. This is similar to the migration plans defined in

embedding request, while minimizing the total bandwidtfntropy. Formally, we denote bjoc(n) the set of virtual

usage for satisfying the requests. nodes hosted on physical node Let mig(72,7n) denote the

« Dynamic VDC Consolidation: As VDCs continuously minimum cost for migrating away € loc(n) to another node
enter and leave the system, the VDC embedding can #Bat has capacity to hostwith minimum distance. Computing
come obsolete and suboptimal. We believe it is beneficidf t9Other (n, ) becomes a problem of migrating away a set
to re-optimize the embedding of VDCs at run-time i?f nodeN located onn such that there is enough capacity to
order to achieve better server and network consolidatigi?commodate: on 7, while minimizing the total migration

Overtime, this allows more physical servers and netwof©St:
components (e.g., switches and ports) to be turned off to min Z wamig(fi, i)
save energy cost [11]. z7€{0,1} _

neloc(n
We have developed two heuristic algorithms to support the w
above scenarios. The first heuristic is designed for mignati
aware VDC embedding. It leverages migration to handle VDC
embedding as well as scaling up requests. The second heurighis problem generalizes a minimum knapsack problem [5],
is designed for dynamic VDC consolidation. It also utilizeghich is AP-hard. We adopt a simple greedy algorithm to
migration to improve utilization and save energy. We désri solve the problem. In particular, for a virtual nofles loc(7)

S. L. Z Thch > " Vr e R

n€loc(n)

each heuristic separately in the following subsections. that belongs to VDCj, we compute a cost-to-size ratiq:
B. Migration-Aware VDC Embedding Heuristic re = M (20)
ZTER wrcf{

We describe now our heuristic for migration-aware VDC
embedding. Given a VDC embedding request (either an initiéhen, we sorfoc(n) based on the values of,, and greedily
embedding or scaling up request), the goal is to find a feasilphigrate awayn € loc(n) in the sorted order until there is
embedding of the request that incurs minimal migration.cosufficient capacity to accommodateon 7. The total migration



Algorithm 1 Algorithm for embedding VDC request Algorithm 2 Dynamic VDC Consolidation Algorithm

1: Sort N based on their states (active or inactive) 1: Let S represent the set of active machines
2. S« N? 2: repeat
3: repeat 3:  SortS in increasing order of/, according to equation
4. Let C C S be the nodes that are connected to already  (21).
embedded nodes 4: @ < next node inS

5. if C =0 then 5 S« loc(n)
6: Sort S accordingsize!, defined by equation (18). 6. SortS according tosize!, defined in equation (18).
7 n* « first node inS 7. for ne S do
8 else 8: n < next node inS. Let i denote the VDC to which
9: Sort C' accordingsize!, defined by equation (18). n belongs
10: n* « first node inC 9 Run Algorithm 1 on VDCi over S\ {n}.
11:  end if 10: end for
12: for » € N in sorted ordedo 11:  cost(n) < the total cost according to equation (17)
13: Compute embedding cosbst(n*,n) according to 12: if cost(n) < ps then

equation (19). If not feasible, sebst’(n*,n) = co.  13: Migrate all virtual nodes according to Algorithm 1
14:  end for 14: Setn to inactive
15:  if cost’(n*,n) = coVn € N then 15:  end if
16: return VDC i is not embeddable 16: S+ S\{n}
17:  else 17: until U > Cy,
18: Embed n* on the noden € N with the lowest

costi(n,n).
19: S S\n* number of machines to be turned on a particular time is a
20.  end if different problem that has been studied extensively (EL8]).
21: until S == {0} Thus, existing techniques can be readily applied to control

the number of active machines. Our migration-aware dynamic
VDC consolidation algorithm is represented by Algorithm 2.
cost of this solution produces/igOther(n,n). If there is no Specifically, the algorithm first sort the physical nodes in
feasible solution, we se#/igOther(n,n) = oo. Lastly, for increasing order of their utilizations. For eaghe N, we
a selected node*, once the embedding cosbst'(n,n) is define the utilizatiorl; as the weighted sum of the utilization
computed for everyi € N, we embedn* on the node with of each type of resources:
the minimum valuecost’(n*,n). The algorithm repeats until i
all nodes inN* are embedded, afost’(n*,n) = oo, which v, = Y Y %, 1)
indicates VDCi is not embeddable. reR i€l neNimeloc(n)y "

As for the running time of the algorithm, line 4 takes _ ) )
O(n) time to complete as it essentially partitions the physicdih€ intuition here is to select the nodes with lowest utilzra
machines into active and inactive machines. Line 6 and 9 tafe candidate for consolidation. Once physical nodes atedsor
O(|N|) time to execute assuming the number of resouré@’ €ach physical node, we sort virtual nodese loc(n)
types is constant. Line 13 requires running the greedy algéeording to their sizesize,,. Let i denote the VDC thah
rithm for the minimum knapsack problem. Assume each phy&€/ongs to. We then run Algorithm 1 on VDOwith physical
cal node can host at most,,., virtual nodes, the running time Nodes excludingi. This will find an embedding where is
of the greedy minimum knapsack problem G&|N|nyq,). MOt used, (|_.e.n has been migrated to (_jlfferent physical node).
The remaining lines each take¥(1) time to run. Thus, the Once all virtual nodes have been migrated, we compute the

total running time of the algorithm i® (| N?||N|nmaz )- cost of the solutiqn according to equation (17) and compare i
) o ) to the energy saving, which is representedpy If the total
C. Dynamic VDC Consolidation Algorithm saving is greater than the total cost of the solution, mignas

The previous heuristic leverages migration to maximizeerformed and» becomes inactive. Otherwise, the algorithm
the number of number of VDC requests. However, as VD@roceeds to the next physical nodein the list until the
requests can scale down and leave the system over timeluster is sufficiently consolidated (i.e., all the utilivms of
large number of physical nodes may become under-utilizétie machines in the cluster have reached a threshijd
In production data centers, this typically happens at nightsing the algorithm, the VDC consolidation component is
time, where the number of VDC requests becomes low. &ble to make dynamic consolidation decisions that consider
this case, we would like to dynamically consolidate VDCmigration cost.
such that a large number of physical machines can be turnedrinally, we analyze the running time of the algorithm. Line
off. We point out that VDC Planner merely tries to minimize8 takesO(|N|) time to complete assuming the number of
the number of active machines used by VDCs. Deciding thesource types is constant. Line 6 takegu,,q. 1og(nmaz))
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Figure 3: Migration-aware embedding vs. baseline algorith

time to complete. Line 9 runs algorithm 1, which takebetweenl — 4 cores,1 — 2GB of RAM and 1 — 10GB of
O(|N?*||N|nmaz) time to complete. Line 13 take®(n,,..) disk space, respectively. The bandwidth requirement betwe
time to finish. The remaining lines each tak@$1) time to any pair of VMs belonging to the same VDC is generated
complete. Thus, the total running time of the algorithm imndomly betweeri and 10Mbps. Furthermore, the lifetime
O(IN|?1og [N |+ |N|n2,,, Nmaz) assuming the maximum of of VDCs follows an exponential distribution with an average
virtual nodes per VDC iSV,,,4z- of 3 hours. In our implementation, a VDC can wait in the
Lastly, we need to answer the question that when VDC cogueue for a maximum duration df hour after which it is
solidation should be performed at run time. A naive soluticrutomatically withdrawn.
is to perform VDC consolidation periodically. However, we In our first experiment, we evaluated the revenue gain
have found that periodic consolidation may not be beneficiathieved when using the migration-aware embedding algo-
when request arrival rate is high. In this case, even if wéhm compared to a baseline algorithm similar to Second-
can reduce the number of active machines for a particuldet that does not consider VM migration and energy-aware
time instance, the high arrival rate of new VDC requests wifDC consolidation. LetR,,, and R,, denote the infrastructure
force more machines to be active, rendering the consatidatiprovider’s income over a period of time using the migration-
effort ineffective. Motivated by this observation, we merh aware algorithm and the baseline algorithm, respectividig
VDC consolidation only when arrival rate is low over a periodevenue gain is defined as
of time (i.e., below a threshold,; requests per second over R,
T minutes). Even though more sophisticated techniques such Gin/n = 100 % R, 100. (22)

as predicting the future arrival rate allows for more actara The same formula is used to compute the gain in terms

consolidation decisions, we have found in our experimeTs t ¢ 1o esmeceptance ratio (i.e., successfully embedded VDC
this simple policy achieves a good balance between mlgTatl%quests divided by the total number of received VDC re-
cost and energy cost at run time. quests), and the number of inactive machines. Figure 3a
and Figure 3b show the instantaneous revenue gain and the
increase in acceptance ratio, respectively. Every poiriaich

We have implemented VDC Planner and evaluated its pdigure represents the gain over a one-minute interval. It can
formance through simulations. Specifically, we have siteaa be seen that from midnight till the morning, the migration-
a data center with 400 physical machines,top-of-rack aware algorithm is providing the same revenue as the baselin
switches, 4 aggregation switches andl core switches. We approach. However, during the day time when resource de-
used the VL2 topology described in [9], which provides fulnand is high, the migration-aware embedding algorithm can
bisection bandwidth in the data center network. achieve up tol7% revenue gain over the baseline approach.

In our experiments, VDC requests arrive following a PoisFhis is expected since during idle periods (e.g., night }jme
son distribution with an average rate @1 requests per sec-it is easy to embed VDC requests given the ample free
ond during night time and.02 requests per second during dayapacities in the data center. However, when the cluster is
time. This reflects the time-of-the-day effect where reseurbusy, it becomes difficult to embed VDC requests directly.
demand is higher during day time. For convenience, we dat this case, migration-aware approach is able to leverage
v» = 1, and Ay, = 0.015. In practice, the value ak;;, can be migration to find room for incoming VDC requests. This result
obtained through experience. The number of VMs per VDC is also confirmed by Figure 3b which shows an improvement
generated randomly betweémnd20. In our simulations, each of 10% in terms of VDC requests acceptance ratio during
physical machine hasCPU cores8GB of memory,100GB of busy periods. We also compare the queuing delay experienced
disk space, and containsl&bps network adapter. The size oby the VDC requests. Figure 3c compares the Cumulative
each VM for CPU, memory and disk are generated randonijstribution Function (CDF) of scheduling delays achiewsd

V. EXPERIMENTS



we showed our proposed approach is able to achieve higher

-
o

N ] E net income as well as lower scheduling delay compared to
2 o - ] existing migration-oblivious solutions.
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