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Abstract—This work studies the joint scheduling- admission
control (SAC) problem over a fading channel. In particular,
the optimal trade-off between maximizing the throughput and
minimizing the queue size (or average congestion) is investigated.
The SAC problem is formulated as a constrained Markov decision
process (MDP) to maximize a utility defined as a function of the
throughput and the queue size. The structural properties of the
optimal policies are subsequently derived. When the statistical
knowledge of the traffic arrival and channel processes is not
available, we propose an online learning algorithm for the optimal
policies. The analysis and algorithm development are relied on the
reformulation of the Bellman’s optimality dynamic programming
equation using suitably defined value functions which can be
learned using online time-averaging.

–Key words–: Scheduling, traffic admission control, Markov
decision process (MDP), learning, structural results.

I. INTRODUCTION

On the communications over time-varying channels, when

the probability distribution functions (PDFs) of the chan-

nel and traffic arrival processes are known a-priori, optimal

scheduling policies can be analyzed and computed off-line [1]–

[4]. However, such knowledge is often unavailable a-priori in

real-life communications, hence, developing online scheduling

algorithms without requiring known PDFs is important [5]–

[8]. While the above works have addressed these issues for

the scheduling problem without traffic admission control, our

current work studies the joint scheduling- traffic admission

control (SAC) problem.

In the scheduling without admission control, the central

concept is the power- delay trade-off [1]. That says, a delay

(or an average congestion) requirement can be attained by

increasing the transmission power, i.e., increasing the service

rate. However, when there is a constraint on the maximum

power, a delay bound might be impossible to achieve. One

solution is to implement admission control to limit the traffic

entering the buffer by admitting only a portion of the arrival

traffic. Also, admission control is required to ensure queue

stability (finite queue) when the power budget is smaller than

the minimum power required to stabilize the queue without

admission control. It is clear that in the systems with SAC,

there is a trade-off between maximizing the throughput and

minimizing the average queue size. The work in [9] proposes

the energy constrained control algorithm (ECCA) to stabilize

the queue and maximize the throughput using Lyapunov

optimization theory. Although simple, ECCA cannot achieve

the optimal throughput- queue size trade-off because it does

not learn the system dynamics. Alternatively, this work focuses

on the control policies achieving the optimal trade-off in all

traffic loading regions.

This work formulates the SAC problem as a constrained

Markov decision process (MDP) to maximize a utility (or

reward) defined as the difference between the throughput

benefit and the buffer cost (or congestion cost). The benefit

and cost functions are increasing functions of the throughput,

and the buffer size, respectively. Such utility functions capture

the inherent trade-off between maximizing the throughput

and minimizing the queue size. Then, using the stochastic

control tools, we can derive the structural properties of the

optimal policies. Moreover, this work develops an online

learning algorithm for the optimal policies without requiring

the explicit knowledge on the system dynamics. Our approach

is to introduce new value functions which are used to rewrite

the Bellman’s equation. The resulting equation is amenable to

online learning via online time-averaging.

II. OPTIMAL JOINT SCHEDULING- ADMISSION CONTROL

A. System description

We consider a SAC model where a single user (a

transmitter- receiver pair) transmits data stored in a buffer

over a fading channel. Time is divided into slots of equal

duration. The dynamics of the buffer (or queue) is controlled

using admission control and scheduling actions. Specifically,

in each slot, the scheduling action computes the amount of

traffic removed from the buffer for transmission to the receiver.

Also, the admission control action determines the amount of

traffic (from the newly-arriving traffic) to be stored into the

buffer.

The wireless channel is assumed to be block-fading over

the time slots. Denote ht as the channel state representing the

power gain in slot t, t = 0, 1, . . .. We assume:

(A1) The channel process {ht} ∈ H is independent and

identically distributed (i.i.d.) over slots with general PDF

pH(ht) over a finite channel state space H.
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Denote B ∈ [0,∞)1 and bt ∈ B as the queue state space

and the queue state representing the queue size (in number

of bits) in slot t, respectively. Let at, at ∈ [0, bt] (in number
of bits) denote the scheduling action in slot t. Moreover, let
yt and rt (in number of bits) represent the amount of new

arrivals to the system and the amount of arrivals admitted into

the queue in slot t, rt ∈ [0, yt]. We assume:

(A2) The traffic arrival process {yt} ∈ Y = [0, ymax] is i.i.d.
over slots with general PDF pY(yt) [1].

Given b0 as the initial backlog, the queue dynamics across the

time slots satisfy the Lindley’s recursion:

bt+1 = [bt − at]+ + rt (1)

where [x]+ denotes max{x, 0}. Note that without admission
control, rt = yt for all slots.

The reliable transmission of at (bits) under channel state ht

in slot t incurs a power c(ht, at).2 We assume:

(A3) The power functions c(h, a) are strictly convex increasing
differential with a; strictly decreasing with h; c(h, 0) = 0,
and lim

a→∞
c(h, a) = ∞.

We define the throughput R as R , lim inf
t→∞

1

t
E

{

t−1
∑

τ=0

rτ

}

where the expectation operator E{.} is taken over the probabil-
ity measure induced by the random processes and some SAC

policy (to be defined later). The (average) queue size (or aver-

age congestion) and power consumption are, respectively, B ,

lim sup
t→∞

1

t
E

{

t−1
∑

τ=0

bτ

}

and C , lim sup
t→∞

1

t
E

{

t−1
∑

τ=0

c(hτ , aτ )

}

.

It is assumed that the power C does not exceed a maximum

value Cmax.

The utility ut obtained in slot t is defined as the difference
between the throughput benefit obtained fb(r

t) and the buffer
cost fc(b

t) incurred in the same slot, i.e., ut , fb(r
t)−fc(b

t).
The (average) utility is defined as:

U , lim inf
t→∞

1

t
E

{

t−1
∑

τ=0

fb(r
τ ) − fc(b

τ )

}

. (2)

We make the following assumption:

(A4) The benefit function fb(r) is increasing concave differen-
tial with r; The cost function fc(b) is increasing convex
differential with b [5].

B. Optimal SAC problem formulation

The optimal SAC problem can be posed as:

max
π∈Π

U such that: C ≤ Cmax (3)

where Π is the set of all feasible (or admissible) SAC control

policies π.
The formulation (3) with fb(r) = r and fc(b) = κb for some

positive κ can be used to study the SAC problem to maximize

1We allow the buffer to be an arbitrary real value for mathematical
convenience.
2One possible power function is derived from the Shannon theoretic

function c(h, a) = (2a − 1)/h which will be used in the simulation section.

the throughput under the constraint on the maximum queue

size [9] because they have similar Lagrangian functions.

1) Optimal throughput-queue size trade-off: To study the

trade-off, we let the functions be fb(r) = r and fc(b) = κb
for some coefficients κ ∈ [0, 1).3 The corresponding maximum
objective value of (3) is U∗ = R∗ − κB∗ where R∗ and B∗

are the throughput and the queue size. Since U∗ is maximized,

R∗ is the maximum throughput such that the queue size is

less than or equal to B∗. More generally, now for any B,
define R(B) to be the maximum throughput such that the

queue size is less than or equal to B. With this definition, we
have R(B∗) = R∗. Proposition 14 characterizes the optimal

trade-off R(B).
Proposition 1: Under maximum power constraint, R(B) is

concave increasing of B.
The points on the curve R(B) are obtained by varying the
coefficients κ ∈ (0, 1).
Since the cost function fc(b) is unbounded increasing with

the queue size (assumption (A4)), the objective function in

(3) is unbounded decreasing with the queue size. Hence, the

optimal solutions of (3) must result in finite queue size, and

hence, the underlying Markov chain is irreducible. Conse-

quently, according to Theorem 12.7 in [10], the constrained

MDP problem (3) admits an optimal solution that can be found

using the Lagrangian approach:

min
β>0

{

max
π∈Π

{

U − βC
}

+ βCmax

}

. (4)

Therefore, to study (4) (and thus (3)), we can first study the

inner maximization for a given positive multiplier β:

max
π∈Π

{

U − βC
}

. (5)

III. OPTIMAL SAC POLICIES: STRUCTURAL RESULTS AND

ONLINE LEARNING ALGORITHM

It is assumed that the scheduling controller cannot observe

the arrival state yt when making the scheduling decision at.

Moreover, the action at is determined first based on the state

(bt, ht) and the action rt is determined after based on the state

([bt − at]+, yt). Hence, a stationary control policy π for (5)
consists of a scheduling policy represented by a function a :
B×H → R

+ and an admission control policy represented by

a function r : B×Y → R
+. The scheduling policy specifies at

as a function of the state (bt, ht), i.e., at = a(bt, ht) ∈ [0, bt];
The admission control policy specifies rt as a function of the

state (b̂t = bt − at, yt), i.e., rt = r(b̂t, yt) ∈ [0, yt].

A. Post-transmission and post-admission states and corre-

sponding state value functions

In (5), define J(b, h) as the state value function for the state
(b, h) ∈ B × H, i.e., the optimal value of (5) with starting

3Linear buffer cost model has been used in several works [4], [8], and is
related to the queuing delay by Little’s theorem. Moreover, since it holds true
that R < B, κ ∈ [0, 1) to avoid triviality, otherwise, no traffic is admitted.
4The proofs of the presented results are omitted due to space limitation.
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state (b0, h0) = (b, h). The Bellman’s optimality dynamic
programming equation for (5) is:

J(b, h) = max
a:a≤b

{

−fc(b)−βc(h, a)+
∑

y′∈Y

pY(y′)

(

max
r:r≤y′

{

fb(r)

+
∑

h′∈H

pH(h′)J(b − a + r, h′)
}

)

− J(b0, h0)

}

(6)

for some arbitrary but fixed state (b0, h0) ∈ B×H. The optimal
policy π∗ consists of the optimal solutions of the two maxi-

mization operators in (6). When the PDFs are known, J(b, h)
can be found using relative value iteration algorithm (RVIA).

When the PDFs are unknown, we propose an approach which

allows online learning of the optimal policies.

We introduce two new states and their corresponding

state value functions. The post-admission state value function

Jp−ad(b̄) is defined as:

Jp−ad(b̄) =
∑

h′∈H

pH(h′)J(b̄, h′) (7)

for post-admission backlog state b̄, b̄ ∈ B. Hence, the post-
admission state b̄t in slot t equals to the backlog state bt+1 in

slot t+1. The post-transmission state value function Jp−tr(b̂)
is defined as:

Jp−tr(b̂) =
∑

y′∈Y

pY(y′)
(

max
r:r≤y′

{

fb(r)+Jp−ad(b̂+r)
})

. (8)

for post-transmission states b̂, b̂ ∈ B. By definition, in slot
t, we have b̂t = [bt − at]+ and b̄t = b̂t + rt. From (6), the

optimal policy π∗ consists of the solutions of the following

optimization problems:

a∗(b, h) = arg max
a:a≤b

{

−fc(b)−βc(h, a)+Jp−tr(b − a)
}

(9)

r∗(b̂, y) = arg max
r:r≤y

{

fb(r) + Jp−ad(b̂ + r)
}

. (10)

Hence, if the value functions are known, the optimal policy

can be derived. Later, we show that online learning of the

value functions is possible using online time-averaging.

From (6), we also have the following relationship:

Jp−ad(b̄)=
∑

h′∈H

pH(h′)max
a:a≤b̄

{

−fc(b̄)−βc(h′, a)+Jp−tr(b̄−a)
}

.

(11)

The structural properties of the optimal policy π∗ are stated.

Theorem 1: The optimal policy π∗ of (5) has the following

properties:

1. The value functions Jp−ad(b̄), and Jp−tr(b̂) are concave
decreasing.

2. The admission control action r∗(b̂, y) is non-increasing
with b̂, non-decreasing with y, and has the following
form:

r∗(b̂, y) = min
{

B̄, b̂ + y
}

(12)

where B̄ is some threshold.

3. The scheduling action a∗(b, h) is non-decreasing with b
and non-decreasing with h.

Theorem 1 says that the admission control policy can be

emulated using a finite buffer with size B̄ and the queue

dynamics in (1) can be represented as follows for t = 0, 1, . . .:

bt+1 = min
{

B̄, [bt − at]+ + yt
}

. (13)

The EECA in [9] prescribes that, in every slot, all new

arrivals are admitted whenever the current backlog is below

a predetermined threshold. Else, all new arrivals are dropped.

Such admission control policy is sub-optimal.

B. Stochastic approximation based online learning algorithm

Using (8) and (11), the sequential RVIA equations for the

value functions can be written as follows for t = 0, 1, . . .:

J t+1
p−tr(b̂) =

∑

y′∈Y

pY(y′)
(

max
r:r≤y′

{

fb(r) + J t
p−ad(b̂ + r)

})

−J t
p−tr(b̂0) (14)

J t+1
p−ad(b̄) =

∑

h′∈H

pH(h′)
(

max
a:a≤b̄

{

fc(b̄) − βc(h′, a)

+J t+1
p−tr(b̄ − a)

})

− J t
p−ad(b̄0) (15)

with initial conditions J0
p−ad(b̄) = 0, J0

p−tr(b̂) = 0, b̄, b̂ ∈ B

and b̂0, b̄0 are arbitrary but fixed states. The iterations converge

to the state value functions satisfying (7), (8), and (11) [10].

The iterations (14)–(15) require known PDFs to evaluate the

expectations. Fortunately, since the expectations are outside of

the maximization operators in (14)–(15), a learning algorithm

can be developed by removing the expectation operators and

then using online time averaging to learn the value functions

under unknown PDFs, i.e., it solves the MDP (5) for a fixed β.
Moreover, to find the solution of (4), the multiplier β can be
updated using stochastic sub-gradient method. The updating

equations are as follows for t = 0, 1, . . .:

J t+1
p−tr(b̂) = (1 − φt)J

t
p−tr(b̂) + φt

(

max
r:r≤yt

{

fb(r)

+J t
p−ad(b̂ + r)

}

− J t
p−tr(b̂0)

)

(16)

βt+1 =
[

βt + εt

(

c
(

ht, a∗(bt, ht)
)

− Cmax

)]+

(17)

J t+1
p−ad(b̄) = max

a:a≤b̄

{

−fc(b̄) − βt+1c(ht+1, a)

+J t+1
p−tr(b̄ − a)

}

− J t
p−ad(b̄0) (18)

for b̄, b̂ ∈ B. The initial conditions are J0
p−ad(b̄) = J0

p−tr(b̂) =
0, β0 > 0, and the learning sequences satisfy the requirement
[6]:

∞
∑

τ=0

φτ =
∞
∑

τ=0

ετ = ∞;
∞
∑

τ=0

φ2
τ + ε2

τ < ∞; lim
τ→∞

ετ

φτ

= 0.

Note that in (16) and (18), we batch-update the state value

functions for all possible backlog states b̂, b̄ ∈ B, not only
the previously visited state. This is possible because the traffic

arrival and the channel processes are independent of the queue

states. Also, J t+1
p−ad(b̄) in (18) needs not to be time-averaged
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since time-averaging has been carried out for J t+1
p−tr in the

same slot. The iterations (16) and (18) can be viewed as the

stochastic estimates of their counterparts (14)–(15) and are

updated based on the instantaneous arrival yt and channel ht

states without requiring known PDFs. The convergence of the

proposed learning algorithm is established next.

Theorem 2: The functions J t
p−ad(b̄) and J t

p−tr(b̂) in (16),
(18) for t = 0, 1, . . . are concave decreasing. Moreover,
lim

t→∞
J t

p−ad(b̄) = J∗
p−ad(b̄), lim

t→∞
J t

p−tr(b̂) = J∗
p−tr(b̂);

lim
t→∞

βt = β∗ where β∗ is the optimal multiplier of (4) and

J∗
p−tr(b̂), J

∗
p−ad(b̄) are the value functions of (5) with β being

replaced by β∗.

The online learning algorithm does not assume any specific

PDFs. Hence, it is very robust to the channel and traffic arrival

model variations.

IV. ILLUSTRATIVE RESULTS

A. Simulation setup

We implement the proposed learning algorithms using MAT-

LAB. We assume that the slot duration is equal to 1/W where

W (Hz) is the bandwidth.

We use the exponential power function derived from the

Shannon theoretic rate c(h, a) = (2a − 1)/h where h ∈ H is

the power gain.

The channel state space consists of 8 states H =
{

0.0131, 0.0418, 0.0753, 0.1157, 0.1661, 0.2343, 0.3407,
0.6200

}

with probabilities [1, 1, 2, 3, 3, 2, 1, 1]/14 [7].
We assume (truncated) Poisson arrival process with an

average rate 15 (bits) per slot with ymin = 0 and ymax = 30.
The learning rate sequences are chosen as φt = (1/t).7 and

εt = (1/t).85. The learning duration is 50000 slots.

To obtain the trade-off curves, we let the functions be fb(r) =
r and fc(b) = κb for different values of κ ∈ (0, 1).

B. Numerical results

We plot in Fig. 1 the optimal power- queue size trade-off.

We can see that without admission control, the queue size

Bmax is approximately 29 (bits) for Cmax = 6.5. Also, in
order to have queue stability (finite queue size), the power

must be greater than C∞ ≈ 5.8.
We are now looking at the SAC policies. Fig. 2 plots

the optimal trade-off curve achieved by the the proposed

online learning algorithm. We also plot the trade-off obtained

by the ECCA in [9]. We can observe that for the same

queue size, the proposed learning algorithm is able to achieve

higher throughput than the ECCA. Alternatively, for the same

throughput, the learning algorithm achieves smaller queue

size. When the queue size approaches Bmax (by setting κ
sufficiently small in the learning algorithm), the throughput

approaches the average arrival rate, i.e., almost all the arrival

is buffered.

Figures 3 demonstrate the convergence of the proposed

learning algorithm for some values of κ. It shows the con-
vergence of the Lagrange multiplier updated using stochastic

sub-gradient method and of the power consumption. In all
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Fig. 1. Optimal power-queue size trade-off for the simulation example.

10 15 20 25 30 35 40 45
11

11.5

12

12.5

13

13.5

14

14.5

15

Average queue size

A
v
e
ra

g
e
 t
h
ro

u
g
h
p
u
t

Proposed learning algorithm

ECCA

Fig. 2. Throughput-queue size trade-off for Cmax > C∞.

cases, the learning algorithm consumes maximum available

power Cmax.

We next demonstrate the use of the proposed learning

algorithm to stabilize the queue when Cmax = 4.5 < C∞.

Fig. 4 shows the trade-off curves obtained by the proposed

algorithm and the ECCA. Again, the proposed algorithm is

more efficient in terms of higher throughput for a given

average queue size or smaller average queue size for a given

throughput. By setting κ small, the queue size increases but
finite, ensuring queue stability and at the same time, the

throughput is maximized but is strictly less than ȳ since traffic
has to be dropped.

C. Connection with Lyapunov optimization based approach

We now draw a (simple) connection between the proposed

optimal learning and ECCA. For convenience, we rewrite the

scheduling action in slot t under optimal learning:

at = arg max
a:a≤bt

{

−βtc(ht, a) + V t
p−tr(b

t − a;βt)
}

. (19)
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Fig. 3. Convergence of the learning algorithm: Lagrange multiplier and
power consumption.

On the other hands, ECCA minimizes the following metric to

compute the scheduling action in slot t [9]:

at
ECCA = arg max

a:a≤bt

{

−qtc(ht, a) + bta
}

= arg max
a:a≤bt

{

−qtc(ht, a) − bt(bt − a)
}

(20)

where a term (bt)2 is added without changing the optimal
solution in (20). {qt} is virtual power queue state in slot t and
is updated as qt+1 = [qt−c(ht, at

ECCA)]++Cmax. Comparing

(19) and (20), we shall have:

V t
p−tr(b̂;β

t) ≈ −αtbtb̂

where αt = βt/qt is some scaling coefficient. Hence, ECCA

can be considered as an approximate learning algorithm where

the value function V t
p−tr(b̂;β

t) is approximated by a linear
decreasing function with the slope −αtbt. Remind that in

the optimal learning, V t
p−tr is concave decreasing. Such ap-

proximation has different effects in different traffic loading

regions. For example, in the large queue size region, i.e., bt

is large, linear decreasing function is a ‘good’ approximation

of the optimal concave decreasing function. Hence, ECCA

performs well in high traffic loading region. However, in

the small/medium queue size region, such approximation is

coarse, which leads to a worse performance of the ECCA as

seen in Fig. 2.
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Fig. 4. Throughput-queue size trade-off for Cmax < C∞.

V. CONCLUSIONS

While existing works have mainly concentrated on the

scheduling problem over a fading channel without traffic

admission control, this work has studied the joint scheduling-

admission control problem. We analyzed the structural proper-

ties of the optimal policies. Online learning algorithm for the

optimal policies is proposed without requiring a-priori known

probability distribution functions of the system dynamics.
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