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Abstract—This work studies the joint scheduling- admission
control (SAC) problem for a single user over a fading channel.
Specifically, the SAC problem is formulated as a constrained
Markov decision process (MDP) to maximize a utility defined
as a function of the throughput and queue size. The optimal
throughput- queue size trade-off is investigated. Optimal policies
and their structural properties (i.e., monotonicity and convexity)
are derived for two models: simultaneous and sequential schedul-
ing and admission control actions. Furthermore, we propose
online learning algorithms for the optimal policies for the two
models when the statistical knowledge of the time-varying traffic
arrival and channel processes is unknown. The analysis and
algorithm development are relied on the reformulation of the
Bellman’s optimality equations using suitably defined state-
value functions which can be learned online, at transmission
time, using time-averaging. The learning algorithms require less
complexity and converge faster than the conventional Q-learning
algorithms. This work also builds a connection between the
MDP based formulation and the Lyapunov optimization based
formulation for the SAC problem. Illustrative results demonstrate
the performance of the proposed algorithms in various settings.

Index Terms—Scheduling, traffic admission control, Markov
decision process (MDP), learning, structural results.

I. INTRODUCTION

ON the communications over time-varying channels, when
the probability distribution functions (PDFs) of the chan-

nel and traffic arrival processes are known a-priori, optimal
scheduling policies can be computed off-line [1]–[5], for
instance by using dynamic programming techniques. However,
such statistical knowledge is often unavailable a-priori in real-
life communications, and hence, developing online scheduling
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algorithms without requiring known PDFs is important [6]–
[9]. While the mentioned works have addressed these issues
for the scheduling problem without traffic admission control,
our current work studies the joint scheduling- traffic admission
control (SAC) problem where only a portion of the arriving
traffic can be buffered for transmission. In particular, we first
analyze the structural properties of the optimal SAC policies
and then propose online learning algorithms for the optimal
policies under a-priori unknown PDFs.

In the scheduling without admission control, the central
concept is the power- delay trade-off [1]. That says, a delay
(or an average congestion) requirement can be attained by
increasing the transmission power, i.e., increasing the service
rate. However, when there is a constraint on the maximum
transmission power, a delay bound might be impossible to
achieve. One solution is to implement admission control to
limit the traffic entering the buffer by admitting only a portion
of the arrival traffic. Also, admission control is especially
required to ensure queue stability (finite queue length) when
the power budget is smaller than the minimum power required
to stabilize the queue without admission control. It can be
observed that there is a trade-off between maximizing the
throughput and minimizing the average queue size (or av-
erage congestion). Hence, admission control can be viewed
as shaping the arrivals from some external arriving sources
to achieve some trade-off outcomes. The works [10], [11]
propose the energy constrained control algorithm (ECCA) to
stabilize the queue and maximize the throughput using Lya-
punov optimization theory. Although simple, ECCA cannot
achieve optimal throughput- queue size trade-off because it
does not learn the system dynamics. Also, the derived bounds
are only tight for sufficiently high traffic loading while the
tightness is not known for light traffic loading. Alternatively,
by exploiting a Markov decision process (MDP) approach
and stochastic control tools, this work focuses on the control
policies achieving the optimal trade-off in all traffic loading
regions. The proposed algorithms learn the system dynamics
and adapt the control decisions accordingly.

This work formulates the SAC problem as a constrained
MDP to maximize a utility defined as the difference between
the throughput benefit and the buffer cost (or congestion
cost). The benefit and cost are increasing functions of the
throughput and the buffer size, respectively. Such utility
functions capture the inherent trade-off between maximizing
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the throughput and minimizing the queue size: The larger the
throughput, the larger the buffer cost becomes and vice versa.
One possible application of the model is delay-sensitive loss-
tolerant multimedia transmission where traffic with different
priorities and delay deadlines [14], [15] is transmitted. In such
systems, lower priority traffic can be dropped to ensure that
the higher priority traffic meets the delay deadlines, especially
for power-limited systems. We emphasize that due to the time-
varying nature of the channel and traffic arrival processes,
admission control needs to be done intelligently to balance
the throughout and queue size, especially when the statistics
of the random processes are a-priori unknown. To address this
issue, this work develops learning algorithms for the optimal
SAC policies using stochastic approximation without requiring
explicit knowledge on the PDFs. While stochastic approxima-
tion based learning algorithms are proposed in [7], [8] for
the scheduling problem without admission control, optimal
learning for the SAC policies has never been addressed.

This work establishes the increasing concavity of the opti-
mal throughput- queue size trade-off in SAC, which comple-
ments the decreasing convexity of the optimal power- delay
trade-off in the scheduling without admission control [1]. The
structural results of the optimal policies under two control
models: simultaneous and sequential scheduling and admis-
sion control actions are derived. To help deriving the structural
results, we define various state-value functions, which are used
to rewrite the Bellman’s optimality dynamic programming
equations. Furthermore, to learn the optimal policies under
unknown system dynamics, it is sufficient to learn these value
functions, which is shown to require less storage complexity
and converge faster than learning the Q-function as in the
conventional Q-learning algorithms [6], [16]. We also observe
that the ECCA in [10] can be interpreted as an approximate
learning algorithm where it approximates the optimal concave
value functions by linear functions. Hence, the proposed learn-
ing approach builds a connection between MDP formulation
and Lyapunov optimization based formulation.

The remaining of the manuscript is organized as follows.
Section II introduces the system model and formulates the
optimal SAC problem. The optimal throughput- queue size
trade-off is presented. Section III and IV analyze the structural
results of the optimal policies and propose online learning
algorithms for two control models. Numerical results are
presented in Section V. All proofs are relegated to the end
of the manuscript.

II. OPTIMAL JOINT SCHEDULING-ADMISSION CONTROL

A. System Description

We consider a SAC model where a single user (a
transmitter-receiver pair) transmits data stored in a buffer over
a fading channel. Time is divided into slots of equal duration.
The dynamics of the buffer (or queue) is controlled using
admission control and scheduling actions. Specifically, in each
slot, the scheduling action computes the amount of traffic
removed from the buffer for transmission to the receiver. Also,
the admission control action determines the amount of traffic
(from the newly-arriving traffic) to be stored into the buffer.
Under a maximum constraint on the power consumption

(and hence, transmission rate), it is clear that there are two
conflicting objectives. One objective is to maximize the traffic
throughput (or the average traffic admission rate to the buffer).
The second objective is to minimize the average queue size
(or the average congestion). We now describe the system
components in details.

The wireless channel is assumed to be block-fading over
the time slots. Denote ht as the channel state representing the
(normalized) power gain in slot t, t = 0, 1, . . .. We assume:

(A1) The channel process {ht} ∈ H is independent and
identically distributed (i.i.d.) block-fading with general
PDF pH(ht) over the finite channel state space H.

Denote B ∈ [0,∞)1 and bt ∈ B as the queue state space and
the queue state representing the queue size (in number of bits)
in slot t, respectively. Let at, at ∈ [0, bt] (in number of bits)
denote the scheduling action in slot t. Moreover, let yt and rt,
rt ∈ [0, yt] (in number of bits) represent the amount of new
arrivals and the amount of arrivals admitted into the buffer in
slot t. We assume:

(A2) The traffic arrival process {yt} ∈ Y = [0, ymax] is i.i.d.
over slots with general PDF pY(yt).

Given b0 as the initial backlog, the queue dynamics across
time slots satisfy the Lindley’s recursion:

bt+1 = [bt − at]+ + rt (1)

where [x]+ denotes max{x, 0}. Note that without admission
control, rt = yt, ∀t. Also, the arrival traffic in slot t can only
be scheduled in the next slot earliest.

The reliable transmission of a (in number of bits) under
channel state h incurs a power c(h, a).2 We assume:

(A3) The power functions c(h, a) are strictly convex increasing
differential with a; strictly decreasing with h; c(h, 0) = 0,
and lim

a→∞ c(h, a) = ∞.

We define the (sample path dependent) throughput R as

R � lim inf
t→∞

1

t
E

{
t−1∑
τ=0

rτ

}
where the expectation operator

E{.} is taken over the probability measure induced by the
random processes and some SAC policy (to be defined
later). The (average) queue size and power consumption

are, respectively, B � lim sup
t→∞

1

t
E

{
t−1∑
τ=0

bτ

}
and C �

lim sup
t→∞

1

t
E

{
t−1∑
τ=0

c(hτ , aτ )

}
. It is assumed that the power C

does not exceed a maximum value Cmax.
The utility obtained in slot t is defined as the difference

between the throughput benefit obtained fb(r
t) and the buffer

cost fc(bt) incurred in the same slot, i.e., u(rt, bt) � fb(r
t)−

1We allow the buffer to be an arbitrary real value for mathematical
convenience [1], [8].

2One possible power function is derived from the Shannon theoretic
function c(h, a) = (2a − 1)/h which will be used in the simulation section.
This power function satisfies assumption (A3).
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fc(b
t).3 The (average) utility is defined as:

U � lim inf
t→∞

1

t
E

{
t−1∑
τ=0

fb(r
τ )− fc(b

τ )

}
. (2)

We make the following assumption:

(A4) The benefit function fb(r) is increasing concave differen-
tial with r; The cost function fc(b) is increasing convex
differential with b.

The increasing monotonicity assumption of the functions
is consistent with the fact that the throughput benefit and
buffer cost increase, respectively, with the admission rate,
and queue size. The assumed concavity of fb and convexity
of fc describe the decreasing marginal utility improvement
with throughput, and increasing marginal utility deterioration
with delay, respectively as observed in some data applications,
such as file transfer, voice transmission, and web browsing
[17]. Such assumption has been widely used in literature, for
example, see [3], [6], [8], [12], and references therein.

B. Optimal SAC Problem Formulation

The utility-optimal SAC problem can be posed as:

max
π∈Π

U such that: C ≤ Cmax (3)

where Π is the set of all feasible (or admissible) SAC control
policies π (to be defined in the following).

Observation. The SAC problem to maximize the throughput
under the maximum queue size constraint in [10], [11] has
similar Lagrangian function as (3) with fb(r) = r and fc(b) =
κb for some positive κ. Hence, it can also be studied using
the formulation (3).

1) Optimal Throughput-Queue Size Trade-Off: To study
the trade-off, in (3), we let the functions be fb(r) = r and
fc(b) = κb for some coefficients κ ∈ [0, 1) which controls
the trade-off.4 The corresponding maximum objective value
is U∗ = R∗ − κB∗ where R∗ and B∗ are the throughput
and (average) queue size. Since U∗ is maximized, R∗ is the
maximum achievable throughput given that the queue size is
equal to B∗.

More generally, now for any B, define R(B) to be the
maximum throughput such that the queue size is less than or
equal to B. Hence, with this definition, we have R(B∗) = R∗.
Proposition 1 characterizes the optimal trade-off R(B).

Proposition 1: Under maximum power constraint, R(B) is
concave increasing of B.
PROOF: The proof based on sample path arguments is
presented in Appendix A.
The points on the trade-off curve R(B) are obtained by
varying the coefficients κ ∈ [0, 1).

Since the cost function fc(b) is unboundedly increasing with
the queue size (assumption (A4)), the objective function in

3The benefit and cost functions are in general application-dependent. For
applications that are more delay sensitive, fc is large, so that less traffic is
admitted to keep the queue size small. For applications that are more sensitive
to traffic losses, fb is large, so that more traffic is admitted.

4Linear buffer cost model has been used in several works [4], [9], [12]
and is related to the queuing delay by Little’s theorem. Moreover, since it
holds true that R < B, κ ∈ (0, 1) to avoid triviality, otherwise, no traffic is
admitted.

TABLE I
TABLE OF NOTATIONS

Notations Meanings

(b, h, y) (Buffer state, channel state, arrival state)
(a, r) (Scheduling action, admission control action)
c(h, a) Power cost function
fb(r) Throughput benefit function
fc(b) Buffer cost function

u = fb(r)− fc(b) Utility function
J(b, h, y; β) Pre-decision value function
Jdec(b̌; β) Post-decision value function

b̌t � [bt − at]+ + rt Post-decision buffer state in slot t
V (b, h;β) Pre-transmission value function
Vtr(b̂; β) Post-transmission value function
Vad(b̃;β) Post-admission value function

b̂t � [bt − at]+ Post-transmission buffer state in slot t
b̃t � b̂t + rt Post-admission buffer state in slot t

(3) is unboundedly decreasing with the queue size. Hence,
the optimal solutions of (3) must result in a finite queue
size, and hence, the underlying Markov chain is aperiodic and
irreducible. Consequently, according to Theorem 12.7 in [18],
the constrained MDP problem (3) admits an optimal solution
that can be found using the Lagrangian approach:

min
β≥0

{
max
π∈Π

{
U − βC

}
+ βCmax

}
. (4)

Therefore, to study (4) (and thus (3)), we can first study the
inner maximization for a given positive multiplier β:

max
π∈Π

{
U − βC

}
. (5)

In the following sections, we study the optimal solutions of
(5) for two SAC models: (i) simultaneous (in Section III)
and (ii) sequential (in Section IV). While the former model
is suitable when the newly arriving traffic is synchronized at
the slot boundaries, the latter model is more applicable when
the new traffic arrives asynchronously (or randomly) during a
slot duration, e.g., after the scheduling decision instant at the
beginning of each slot.5

III. OPTIMAL POLICIES FOR MODEL 1: STRUCTURAL

RESULTS AND ONLINE LEARNING ALGORITHM

In Model 1, it is assumed that in slot t, the controller
observes the state (bt, ht, yt) and determine the actions at

and rt simultaneously. This control model is similar to that
considered in [4]. Hence, a stationary SAC policy π1 can
be represented by a 2-tuple function (a, r) : B × H ×
Y → R

+ × R
+ specifying the control actions in slot t as

at = a(bt, ht, yt) ∈ [0, bt] and rt = r(bt, ht, yt) ∈ [0, yt]
where R

+ denotes the set of nonnegative numbers.

A. Post-Decision States and Post-Decision State-Value Func-
tion

Define J(b, h, y;β) as the (pre-decision) state-value func-
tion, i.e., J(b, h, y;β) is the optimal value of (5) with the

5For convenience, we have summarized the various notations used in this
work in Table I.
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starting state (b0, h0, y0) = (b, h, y). The Bellman’s optimality
dynamic programming equation for (5) is:

J(b, h, y;β) = max
a:a≤b
r:r≤y

{
fb(r) − fc(b)− βc(h, a)+

∑
h′∈H

∑
y′∈Y

pH(h′)pY(y′)J(b−a+r, h′, y′;β)

}
−J(b0, h0, y0;β). (6)

for some arbitrary but fixed state (b0, h0, y0). The optimal
policy π∗

1 is the optimal solution of (6). We can see that (6)
requires known PDFs to evaluate the expectation. However, the
PDFs are often unknown in real-time systems which makes the
exact computation of the expectation impossible. Conventional
reinforcement Q-learning algorithms [6], [16] can be used
to learn π∗

1 via learning the state-action Q function without
requiring known PDFs.6 However, Q-learning algorithms re-
quire large (storage) complexity, and exhibit slow convergence
[8], [9]. We will propose an alternative approach with less
complexity and faster convergence in the following.

Similar to [7]–[9], we define the post-decision state-value
function Jdec(b̌;β) as:

Jdec(b̌;β) =
∑
h′∈H

∑
y′∈Y

pH(h′)pY(y′)J(b̌, h′, y′;β) (7)

for post-decision states b̌ ∈ B. The post-decision state b̌t in
slot t is the resulting queue state after the control decisions
are made. Hence, we have the queue dynamics as bt+1 = b̌t �
[bt− at]+ + rt. Using (6) and (7), π∗

1 can be computed as the
solution of the following problem:

argmax
a:a≤b
r:r≤y

{
fb(r)−fc(b)−βc(h, a)+Jdec(b−a+r;β)

}
. (8)

As we will see, studying the structural properties of the
optimal policy using (8) and Jdec(b̌;β) is easier than using
(6) and J(b, h, y;β). Moreover, to compute π∗

1 , it is sufficient
to know Jdec(b̌;β). In the following, we propose an online
learning algorithm for Jdec(b̌;β) without requiring known
PDFs. Moreover, as we will see, learning Jdec(b̌;β) requires
less complexity and converges faster than learning the Q
function as in the conventional Q-learning algorithms.

From (6) and (7), we can write the optimality functional
equation on Jdec(b̌;β):

Jdec(b̌;β) =
∑
h′∈H

∑
y′∈Y

pH(h′)pY(y′) max
a:a≤b̌
r:r≤y′

{
fb(r) − fc(b̌)

−βc(h′, a)+Jdec(b̌− a+ r;β)

}
−Jdec(b̌0;β) (9)

for some arbitrary but fixed state b̌0. The structural properties
of the optimal policy are now stated.

Theorem 1: Under Model 1, the optimal policy π∗
1 of (5)

has the following properties:

1. The function Jdec(b̌;β) is concave decreasing with b̌ ∈ B.

6Note that after knowing Q function, the value function J(b, h, y;β) can
also be computed.

2. The scheduling action a∗(b, h, y) is non-decreasing with
b and y.

3. The admission control action r∗(b, h, y) is non-increasing
with b and non-decreasing with y.

4. The actions a∗(b, h, y) and r∗(b, h, y) are non-decreasing
with h.

PROOF: The proof is presented in Appendix B.
We can see that with the increasing buffer occupancy b, more
data should be scheduled and less traffic should be admitted
in order to reduce the buffer cost. When there is more arrival
traffic, more data should be scheduled as such to make ‘room’
for new traffic to improve the throughput. The last statement
in Theorem 1 holds for i.i.d. fading channels only (assumption
(A1)).

B. Stochastic Approximation Based Online Learning Algo-
rithm

To compute the optimal policy in (8), we need to compute
the value function Jdec(b̌;β). Using (9), Jdec(b̌;β) can be
computed using the sequential relative value iteration algo-
rithm (RVIA) as follows for t = 0, 1, . . .:

J t+1
dec (b̌;β)=

∑
h′∈H

∑
y′∈Y

pH(h′)pY(y′)

(
max
a:a≤b̌
r:r≤y′

{
fb(r)−fc(b̌)

−βc(h′, a)+J t
dec(b̌− a+ r;β)

})
−J t

dec(b̌0;β) (10)

with initial condition J0
dec(b̌;β) = 0. The purpose of subtract-

ing the scalar offset is to keep the iterations stable. Iterations
(10) converge to Jdec(b̌;β) satisfying (9) [18].

The iterations (10) require known PDFs to evaluate the
expectation. However, the equation (10) has a nice struc-
ture such that the expectations are moved outside of the
maximization, and hence, we can use online time-averaging
to learn Jdec(b̌;β) under unknown PDFs, i.e., it solves the
MDP (5) for a fixed β. Moreover, to find the solution of
(4), the multiplier β can be updated using stochastic sub-
gradient method. The optimality and convergence results of
the online learning algorithm are ensured using the results
in stochastic approximation theory. Using (10), the online
updating equations are as follows:

βt+1 = Λ
[
βt + εt

(
c(ht, at)− Cmax

)]
(11)

J t+1
dec (b̌;β

t+1) = (1− φt)J t
dec(b̌;β

t) + φt

(
max
a:a≤b̌
r:r≤yt

{
fb(r)

−fc(b̌)−βtc(ht, a)+J t
dec(b̌− a+ r;βt)

}
−J t

dec(b̌0;β
t)

)
(12)

for b̌ ∈ B with initial conditions J0
dec(b̌;β

0) = 0, and
β0 > 0. We have used the projection operator Λ to project the
multiplier onto interval [0, L] for sufficiently large L to ensure
boundedness of the multiplier. The learning rate sequences φt

and εt satisfy the following properties [7]:
∞∑
τ=0

φτ =
∞∑
τ=0

ετ = ∞;
∞∑
τ=0

(φτ )2 + (ετ )2 < ∞; lim
τ→∞

ετ

φτ
= 0.

(13)
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The control actions at and rt in slot t are computed as:

argmax
a:a≤bt

r:r≤yt

{
fb(r)− fc(b

t)−βtc(ht, a)+J t
dec(b

t− a+ r;βt)

}
.

(14)
It is worth noting that in (12), we batch-update J t+1

dec (b̌;β
t+1)

for all post-decision states b̌ ∈ B, not only the previously-
visited state. This is possible because the traffic arrival and
the channel processes are independent of the queue states
[8], [9]. The equation (12) can be viewed as a stochastic
estimate of its counterpart (10), and is updated based on the
instantaneous traffic arrival yt and channel ht states without
requiring known PDFs. The optimality and convergence of the
proposed learning algorithm are stated next.

Theorem 2: The functions J t
dec(b̌;β

t) for t = 0, 1, . . .
are concave decreasing with b̌. Moreover, lim

t→∞ J t
dec(b̌;β

t) =

Jdec(b̌;β
∗); lim

t→∞βt = β∗ where β∗ is the optimal Lagrange
multiplier of (4).

PROOF: The proof of the decreasing concavity property
of J t

dec(b̌;β
t) follows similar line of arguments as that of

Theorem 1 in Appendix B. The convergence proof based on
stochastic approximation and two-timescale analysis can be
adapted from the results in [7], [19] and is omitted for brevity.

The proposed online learning algorithm does not assume
any specific PDFs of the system dynamics. Hence, it is
very robust to channel and traffic arrival model variations.
Due to batch updates, the learning process converges faster.
It is mentioned in [8] that batch updates result in twice
faster convergence rate than updating one state in each slot.
Also, the batch updates preserve the concavity of the value
functions. Hence, the computational complexity of updating
the value functions in (12) involves solving convex opti-
mization problems. The convexity preservation of the value
functions can also be exploited to derive approximate learning
algorithm as in [8]. Compared to Q-learning which learns the
Q function with large complexity (which is approximately
|B|2 × |H| × |Y|2 where |.| denotes cardinality of a set) and
slow convergence [6], [16], the proposed learning requires less
complexity (which is |B|) and converges faster. This is because
Q-learning maintains a value table for each state-action pair
and updates one table entry in each slot.

We can see that the primal variables and the dual La-
grange multiplier are iterated simultaneously albeit on differ-
ent timescales. The latter is updated at a slower timescale
than the former. As seen from the slower timescale variable,
the faster timescale variables appear to be equilibrated to
the optimal values corresponding to its current value. Also,
as viewed from the faster timescale variables, the slower
timescale variable appears to be almost constant. Such two
timescales updates converge to the optimal solution of (4) [7],
[19].

The last remark regards the periodic updates in the learning
algorithm. In (12), updates are performed in every slot. How-
ever, even updates are carried out with updating frequency
T0 > 1 slots or more general, at random slots using the latest
information (asynchronous updates), the learning algorithm
also converges to the optimal solution because all the arrival
and channel states are still realized infinitely many times.

Moreover, it is expected that the convergence rate is slower if
the multipliers are updated less frequently.

IV. OPTIMAL POLICIES FOR MODEL 2: STRUCTURAL

RESULTS AND ONLINE LEARNING ALGORITHM

In Model 2, it is assumed that in slot t, the controller
does not observe the arrival state yt when making schedul-
ing decision. More specifically, the scheduling action at is
determined first based on the state (bt, ht) and the admission
control action rt is determined after based on the state
([bt − at]+, yt). This model is commonly assumed in existing
works. Hence, a stationary SAC policy π2 for (5) consists of a
scheduling policy represented by a function a : B×H → R

+

and an admission control policy represented by a function
r : B × Y → R

+. The scheduling policy specifies at as a
function of the state (bt, ht), i.e., at = a(bt, ht) ∈ [0, bt]; The
admission control policy specifies rt as a function of the state
(bt − at, yt), i.e., rt = r(bt − at, yt) ∈ [0, yt].

A. Post-Transmission and Post-Admission States and Corre-
sponding State-Value Functions

Define V (b, h;β) as the (pre-transmission) state-value func-
tion, i.e., V (b, h;β) is the optimal value of (5) with the starting
state (b0, h0) = (b, h). The functional Bellman’s optimality
equation for (5) is:

V (b, h;β)= max
a:a≤b

{
−fc(b)−βc(h, a)+

∑
y′∈Y

pY(y′)
(
max
r:r≤y′

{
fb(r)

+
∑
h′∈H

pH(h′)V (b− a+ r, h′;β)
})

− V (b0, h0;β)
}

(15)

for some arbitrary but fixed state (b0, h0). The optimal policy
π∗
2 consists of the optimal solutions of the two maximizations

in (15). The equation (15) is different from that in (6) reflecting
the differences in the SAC models.

We now introduce two new states and their corresponding
state-value functions. The post-admission state-value function
Vad(b̃;β) is defined as:

Vad(b̃;β) =
∑
h′∈H

pH(h′)V (b̃, h′;β) (16)

for post-admission states b̃ ∈ B. Hence, the post-admission
state b̃t in slot t equals to the backlog state bt+1 in slot t+1.
The post-transmission state-value function Vtr(b̂;β) is defined
as:

Vtr(b̂;β) =
∑
y′∈Y

pY(y′)
(
max
r:r≤y′

{
fb(r) + Vad(b̂+ r;β)

})
.

(17)
for post-transmission states b̂ ∈ B. By definition, we have the
queue dynamics b̂t = [bt − at]+, b̃t = b̂t + rt, and bt+1 = b̃t.
From (15), we also have the following relationship:

Vad(b̃;β)=
∑
h′∈H

pH(h′)max
a:a≤b̃

{
−fc(b̃)−βc(h′, a)+Vtr(b̃−a;β)

}
.

(18)
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From (15), the optimal policy π∗
2 is the optimal solutions of

the following problems:

a∗(b, h)= argmax
a:a≤b

{
−fc(b)−βc(h, a)+Vtr(b− a;β)

}
(19)

r∗(b̂, y)= argmax
r:r≤y

{
fb(r) + Vad(b̂ + r;β)

}
. (20)

Hence, to compute the optimal policy π∗
2 , it is sufficient to

know the state-value functions Vtr and Vad. In the following,
we will propose a learning algorithm for these functions.

Theorem 3: Under Model 2, the optimal policy π∗
2 of (5)

has the following properties:

1. The functions Vad(b̃;β), and Vtr(b̂;β) are concave de-
creasing with b̃, and b̂ ∈ B.

2. The scheduling action a∗(b, h) is non-decreasing with b
and non-decreasing with h.

3. The admission control action r∗(b̂, y) is non-increasing
with b̂, non-decreasing with y, and has the following
form:

r∗(b̂, y) = min
{
B̄, b̂+ y

}
(21)

where B̄ is some threshold.

PROOF: The proof is presented in Appendix C.
Theorem 3 says that the admission control policy can be
emulated using a finite buffer with size B̄ and the queue
dynamics in (1) can be written as follows for t = 0, 1, . . .:

bt+1 = min
{
B̄, [bt − at]+ + yt

}
. (22)

All arrivals yt are admitted whenever adding yt does not make
the backlog exceed the threshold B̄, and else rt is equal to
only that portion of the new arrivals that take backlog up to
B̄. The EECA developed in [10] prescribes that, in every slot,
all new arrivals are admitted whenever the current backlog is
below a predetermined threshold. Else, all new arrivals are
dropped.

More insights into the scheduling policy can be obtained
using convex analysis for (19). We can see that when the state
h is above some (unique) ‘threshold’ h∗ satisfying:

β∂c(h∗, 0)/∂a = −∂Vtr(0;β)/∂b̂, (23)

all data is scheduled when the backlog is below the threshold
b1(h) (as a function of h) satisfying:

β∂c(h, b1(h))/∂a = ∂c(h∗, 0)/∂a, h ≥ h∗. (24)

The transmission power is smaller than the buffer cost because
of favorable channel state(s). Furthermore, when the backlog b
is larger than b1(h), only a portion of the backlog is scheduled,
i.e., a∗(b, h) ∈ (b1(h), b). This is because the power becomes
large due to the convex increasing property. b1(h) can be
shown to be increasing with h, h > h∗. When h is below
h∗, no traffic is scheduled when the backlog is below another
threshold b2(h) satisfying:

∂Vtr(b2(h);β)/∂b̂ = β∂c(h, 0)/∂a, h < h∗ (25)

since the buffer cost is small, and the transmission power is
large. When b > b2(h), a portion of the backlog is scheduled,
i.e., a∗(b, h) ∈ (0, b). Note that b2(h) can be shown to
be decreasing with h. The scheduling policy is depicted in

Channel state h

Schedule
Everything

Schedule
Nothing

h*

b1(h)b2(h)

Schedule
Partially

Queue state b

Fig. 1. Characterization of the optimal scheduling policy in Model 2.

Fig. 1. Overall, the greater the backlog and/or the better the
channel state, the more you transmit. Such scheduling policy
possesses similar structural properties as scheduling policy
without admission control [2], [3], [8]. This is not surprising
since we have shown that the admission control policy can be
implemented using a queue with finite buffer B̄.

B. Stochastic Approximation Based Online Learning Algo-
rithm

To compute the optimal policy in (19) and (20), we need
to compute the value functions. Using (17) and (18), the
sequential RVIA equations for the value functions can be
written as follows for t = 0, 1, . . . for b̂, b̃ ∈ B:

V t+1
tr (b̂;β)=

∑
y′∈Y

pY(y′)
(
max
r:r≤y′

{
fb(r) + V t

ad(b̂ + r;β)
})

−V t
tr(b̂0;β) (26)

V t+1
ad (b̃;β)=

∑
h′∈H

pH(h′)
(
max
a:a≤b̃

{
fc(b̃)− βc(h′, a)

+V t+1
tr (b̃ − a;β)

})
− V t

ad(b̃0;β) (27)

with initial conditions V 0
ad(b̃;β) = 0, V 0

tr(b̂;β) = 0 and b̂0,
b̃0 are arbitrary but fixed states. The iterations converge to the
functions satisfying (16), (17), and (18).

Again, iterations (26) and (27) require known PDFs to eval-
uate the expectations. Since the expectations are outside of the
maximization operators in (26)–(27), a learning algorithm can
be developed using online time-averaging to learn the value
functions. Also, the Lagrange multiplier in (4) can be updated
using stochastic sub-gradient algorithm at a slower timescale.
The updating equations are as follows for t = 0, 1, . . .:

βt+1 =Λ
[
βt + εt

(
c
(
ht, at

)− Cmax

)]
(28)

V t+1
tr (b̂;βt+1) = (1 − φt)V t

tr(b̂;β
t) + φt

(
max
r:r≤yt

{
fb(r)

+V t
ad(b̂+ r;βt)

}
− V t

tr(b̂0;β
t)
)

(29)

V t+1
ad (b̃;βt+1) = max

a:a≤b̃

{
−fc(b̃)− βtc(ht, a)

+V t+1
tr (b̃− a;βt+1)

}
− V t

ad(b̃0;β
t) (30)
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Fig. 2. Optimal power-queue size trade-off.

for b̃, b̂ ∈ B. The initial conditions are V 0
ad(b̃;β

0) =
V 0
tr(b̂;β

0) = 0, β0 > 0, and the learning rate sequences satisfy
the requirement in (13). The control actions at and rt in slot
t = 0, 1, . . . are computed as:

at =argmax
a:a≤bt

{
−βtc(ht, a)+V t

tr(b
t − a;βt)

}
(31)

rt = argmax
r:r≤yt

{
fb(r) + V t

ad(b̂
t + r;βt)

}
. (32)

Note that in (29) and (30), we also batch-update the state-
value functions for all states b̂, b̃ ∈ B due to independent
processes. Also, V t+1

ad in (30) needs not to be time-averaged
since time-averaging has been carried out for V t+1

tr in the same
slot. Again, we can see that the iterations (29) and (30) are
updated based on the instantaneous arrival yt and channel ht

states without requiring known PDFs. The convergence of the
learning algorithm is established next.

Theorem 4: The functions V t
ad(b̃;β

t) and V t
tr(b̂;β

t) for
t = 0, 1, . . . are concave decreasing with b̃ and b̂. Moreover,
lim
t→∞V t

ad(b̃;β
t) = Vad(b̃;β

∗), lim
t→∞V t

tr(b̂;β
t) = Vtr(b̂;β

∗);

lim
t→∞βt = β∗ where β∗ is the optimal Lagrange multiplier
of (4).
PROOF: The proof is analogous to that of Theorem 2 and is
omitted.

1) Exploiting Structural Results for Reduced Complexity
Learning: The learning algorithm (28)–(30) needs to update
and store the values of two value functions. Exploiting the
threshold property of the optimal admission control policy
(see Theorem 3), it is possible to reduce the learning (storage)
complexity as follows. In each slot, we can update and store
the value function V t+1

tr (b̂;βt+1) directly using V t
tr(b̂;β

t)
which is required to compute the scheduling action. The
admission control policy can be updated by updating the
threshold B̄t+1 only. Such updates can be done as follows.
Replacing J t

ad in (29) using (30), we have:

V t+1
tr (b̂;βt+1) = (1− φt)V t

tr(b̂;β
t) + φt

(
max
r:r≤yt

{
fb(r)

+ max
a:a≤b̂+r

{
−fc(b̂ + r)−βtc(ht, a)+V t

tr(b̂+ r − a;βt)
}}

−V t
tr(b̂0;β

t)
)
.

TABLE II
CHANNEL STATES USED IN THE SIMULATION

Power gain |c|2
σ2 regions Representative state values h

(0, 0.0280], (0.0280, 0.0580], 0.0131, 0.0418,
(0.0580, 0.0960], (0.0960, 0.1400], 0.0753, 0.1157,
(0.1400, 0.1980], (0.1980, 0.2780] 0.1661, 0.2343,
(0.2780, 0.4160], (0.4160,∞) 0.3407, 0.6200

The threshold B̄t+1 is then updated as such to sat-
isfy ∂V t+1

ad (B̄t+1;βt+1)/∂b̃ + ∂fb(B̄
t+1)/∂r = 0 where

V t+1
ad (b̃;βt+1) is computed using V t+1

tr (b̂;βt+1) as in (30).
Note that we do not need to store the values of V t+1

ad (b̃;βt+1)
in each slot. The threshold B̄t+1 converges to the optimal
threshold B̄ in Theorem 3 when t → ∞ due to the conver-
gence of the value functions (see Theorem 4).

V. ILLUSTRATIVE RESULTS

A. Simulation Setup

We implement the proposed learning algorithms using
MATLAB. We assume that the slot duration is equal to 1/W
where W (Hz) is the bandwidth.

To determine the channel states for illustrative purposes, the
entire range (0,∞) of (normalized) power gain |c|2

σ2 (where
σ2 and c are, respectively, the variance of the white Gaussian
noise and the channel coefficient) has been divided into 8
regions and each region is represented by a channel state value
h ∈ H. The 8 regions and their corresponding representative
values are summarized as in Table II. The corresponding
probabilities are [1, 1, 2, 3, 3, 2, 1, 1]/14. Such discretization of
state space of the power gains has been justified in [20], [21].

We use the exponential power function derived from the
Shannon theoretic rate c(h, a) = (2a − 1)/h.

We assume (truncated) Poisson arrival process with an
average rate 15 (bits) per slot with ymin = 0 and ymax = 30.
The buffer size is assumed to be 1000 for implementation
convenience and we observe no buffer overflow happens.
The learning rate sequences are chosen as φt = (1/t).7 and
εt = (1/t).85. The learning algorithms are run for 50000 slots
for each simulation example.
To obtain the trade-off curves, we let the functions be fb(r) =
r and fc(b) = κb for different values of κ ∈ (0, 1).

B. Numerical Results

We plot in Fig. 2 the optimal power- queue size trade-off
[1]. Note that the arrival state yt cannot be observed when
scheduling decision at is determined (Model 2). We can see
that to achieve maximum throughput given an average power
Cmax = 6.5, the queue size Bmax is approximately 29 (bits).
Also, the minimum power required to ensure finite queue size
without traffic dropping is C∞ ≈ 5.8.

We are now looking at the performances of the SAC
policies. Fig. 3 plots the optimal trade-off curves achieved
by the proposed online learning algorithms for both models.
We also plot the trade-off obtained by the ECCA in [10].
We can observe that for the same queue size, the proposed
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Fig. 3. Throughput- queue size trade-off for Cmax > C∞.

learning algorithms is able to achieve higher throughput than
the ECCA. Alternatively, for the same throughput, the learning
algorithms achieve smaller queue size. When the average
queue size approaches Bmax (by setting κ sufficiently small
in the learning algorithms), the throughput approaches the
average arrival rate, i.e., almost all the arrival is buffered.
Moreover, better trade-off can be achieved when we are able
to observe the realization of the arrival state (Model 1) since
we can jointly optimize the scheduling and admission control
decisions at the same time. The results also confirm the
concavity increasing characteristic of the optimal trade-off
which is analytically proved in Proposition 1.

Figs. 4 and 5 demonstrate the convergence of the proposed
learning algorithm under Model 2 for some values of κ
(Theorem 4).7 Fig. 4 shows the convergence of the Lagrange
multiplier (updated using stochastic sub-gradient method) and
power consumption while Fig. 5 shows the convergence of the
queue size and throughput. In all cases, the learning algorithm
consumes the maximum available power Cmax. We can see
that the coefficient κ controls the throughput- queue size trade-
off, i.e., smaller κ results in higher average queue size and
higher throughput. The algorithm converges reasonably fast,
especially for small values of κ. Note that for the considered
systems, the duration of operation is much longer than that
needed to achieve convergence. Hence, even the learning
is sub-optimal at the beginning, convergence to the optimal
solutions happens much earlier than the completion of the
operation.

In the last experiment, we demonstrate the use of the
proposed learning algorithm to stabilize the queue when the
maximum power is Cmax = 4.5 < C∞. Fig. 6 shows the
trade-off curves obtained by the proposed algorithm and the
ECCA. Again, the proposed algorithm is more efficient in
terms of higher throughput for a given average queue size or
smaller average queue size for a given throughput. However,
the performance gap is smaller compared to that in Fig. 3 for
stablizable arrival process. By setting κ small, the queue size
increases but finite, ensuring queue stability and at the same
time, the throughput is maximized and is strictly less than the
average arrival rate since traffic has to be dropped.

7We omit the simulated convergence studies for Model 1 for brevity.
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C. Connection with Lyapunov Optimization Based Approach

We now draw a (simple) connection between the proposed
optimal learning and ECCA. For convenience, we rewrite the
scheduling action in slot t as in (31) under optimal learning:

at = argmax
a:a≤bt

{
−βtc(ht, a) + V t

tr(b
t − a;βt)

}
. (33)

On the other hand, ECCA minimizes the following metric to
compute the scheduling action in slot t [10]:

atECCA = argmax
a:a≤bt

{
−qtc(ht, a) + bta

}
= argmax

a:a≤bt

{
−qtc(ht, a)− bt(bt − a)

}
(34)

where a term (bt)2 is added without changing the optimal
solution in (34). {qt} is virtual power queue state in slot t and
is updated as qt+1 = [qt−c(ht, atECCA)]

++Cmax. Comparing
(33) and (34), we shall have:

V t
tr(b̂;β

t) ≈ −αtbtb̂

where αt = βt/qt is some scaling coefficient. Hence, ECCA
can be considered as an approximate learning algorithm where
the value function V t

tr(b̂;β
t) is approximated by a linear

decreasing function with the slope −αtbt. Remind that in
the optimal learning, V t

tr is concave decreasing. Such ap-
proximation has different effects in different traffic loading
regions. For example, in the large queue size region, i.e., bt is
large, linear decreasing function is a ‘good’ approximation
of the optimal concave decreasing function. Moreover, the
two admission control policies do not have much different
effects since the queue size is (effectively much) larger than
the arrival state (see Fig. 6). Hence, ECCA performs well
in high traffic loading region. However, in the small/medium
queue size region, such approximation is coarse, which leads
to a worse performance of the ECCA as seen in Fig. 3.

VI. CONCLUSION

This paper presents a study of the joint scheduling-
admission control problem and its corresponding throughput-
queue length trade-off using the Markov decision process
approach and stochastic control tools. We have derived the

structural properties of the optimal policies and proposed
online learning algorithms for the optimal policies without
requiring a-priori known probability distribution functions
of the environment dynamics. The analysis and algorithm
development are relied on the introduction of new state-value
functions to reformulate the Bellman’s dynamic programming
equations. Moreover, these value functions can be learned
efficiently using online time-averaging whose convergence and
optimality are ensured by the results in the stochastic ap-
proximation theory. The learning algorithms require less com-
plexity and converge faster than the conventional Q-learning
algorithms. We note that in this work, we do not consider
buffering non-admitted traffic. A possible future extension is
to employ an additional (controller) buffer to store the non-
admitted traffic. These traffic can be sent to the scheduler
buffer at a later time, when the power is under-utilized. Such
configuration can potentially improve the throughput of the
system.

Acknowledgment: The first author would like to thank Dr.
Long Le at Institut National de la Recherche Scientifique
(INRS), University of Quebec for discussions and helpful
comments on the paper.

APPENDIX: PROOFS

Appendix A: Proof of Proposition 1

Fix Cmax.8 We prove R(B) is concave increasing with B.
That R(B) is increasing with B is obvious since more traffic
can be admitted if the queue size is allowed to be larger
(for the same service rate). We show that it is concave. Let
B1 and B2 be two values of queue size with corresponding
throughputs R(B1) and R(B2). We remind that R(B) is the
maximum throughput such that the queue size is less than or
equal to B. We want to show that for any λ ∈ [0, 1]:

R(λB1 + (1 − λ)B2) ≥ λR(B1) + (1− λ)R(B2). (35)

We will prove this using sample path arguments. Let
{ht(w)}∞t=0 and {yt(w)}∞t=0 be given sample paths of the
channel states and traffic arrival states. Let {at1(w)}∞t=0 and
{rt1(w)}∞t=0 be sequences of control actions corresponding
to the policy which attains R(B1). Let {bt1(w)}∞t=0 be the
corresponding sequence of backlog states. Likewise, define
{at2(w)}∞t=0, {rt2(w)}∞t=0, and {bt2(w)}∞t=0 corresponding to
R(B2). Note that ati(w) ≤ bti(w) and rti(w) ≤ yt(w) for
i = 1, 2 for all sample paths w and for all t. We have:

lim
t→∞

1

t

t−1∑
τ=0

E
{
c(hτ (w), aτi (w))

}
= Cmax, i = 1, 2 (36)

where the expectation is taken over all sample paths. Now
consider the λ−policy, a new sequences of control actions,
{atλ(w)}∞t=0 and {rtλ(w)}∞t=0 where for all t

atλ(w) = λat1(w) + (1− λ)at2(w) (37)

rtλ(w) = λrt1(w) + (1− λ)rt2(w). (38)

We show that λ−policy is a feasible policy. Let {btλ(w)}∞t=0

be the sequence of backlog states using this policy.

8It can be seen that the optimal policies will always achieve Cmax.
Otherwise, we can increase the service rate to reduce the buffer cost or to
increase the throughput leading to increased objective value.
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• It can be seen that rtλ(w) ≤ yt(w) for all w and t.
• For scheduling sequence {atλ(w)}∞t=0, due to the convex-

ity of c(h, a), for each t, we have:

c(ht(w), atλ(w)) ≤ λc(ht(w), at1(w))

+(1− λ)c(ht(w), at2(w)) (39)

and hence,

lim
t→∞

1

t

t−1∑
τ=0

E
{
c(hτ (w), aτλ(w))

} ≤ Cmax. (40)

Hence, the λ−policy satisfies the power constraint.
• Assume at time t = 0, b0λ(w) = b01(w) = b02(w) = 0 for

all sample paths w. By definition, we have bt+1
i (w) =

bti(w)−ati(w)+rti(w) for i = 1, 2 and t ≥ 0. Then, using
recursion, we have btλ(w) = λbt1(w) + (1 − λ)bt2(w) for
all t. Consequently, we conclude that atλ(w) = λat1(w)+
(1− λ)at2(w) ≤ btλ(w) for all t.

Hence, we conclude that λ−policy is a feasible policy.
We have the average queue size by the λ−policy:

Bλ = lim
t→∞

1

t

t−1∑
τ=0

E
{
bτλ(w)

}
= λB1 + (1− λ)B2. (41)

Summing both sides of (38) and taking expectations, we have:

Rλ = lim
t→∞

1

t

t−1∑
τ=0

E
{
rτλ(w)

}
= λR(B1) + (1− λ)R(B2)

(42)
The λ−policy achieves average queue size Bλ = λB1 +
(1 − λ)B2 and throughput Rλ = λR(B1) + (1 − λ)R(B2).
Moreover, by (40), the optimal policy with average power
Cmax can achieve the same average queue size but with higher
throughput. Thus, we must have R(λB1 + (1 − λ)B2) ≥
λR(B1) + (1− λ)R(B2) as desired. We conclude that R(B)
is concave increasing with B.

Appendix B: Proof of Theorem 1

We prove the decreasing concavity property of Jdec(b̌;β)
with b̌ ∈ B. Note that the monotonic property is obvious since
the utility is (strictly) decreasing due to (strictly) increasing
buffer cost with queue size. To prove the concavity property,
we show that J t

dec(b̌;β) in the RVIA equation (10) is concave
for t = 0, 1, . . . and since lim

t→∞ J t
dec(b̌;β) = Jdec(b̌;β), we

conclude that Jdec(b̌;β) is also concave. We use induction.
By initialization J0

dec(b̌;β) = 0. Using induction and
supposing that J t

dec(b̌;β) is concave for some t ≥ 0. Hence,
for some fixed h ∈ H, by assumptions (A3) and (A4),
fb(r) − fc(b̌) − βc(h, a) + J t

dec(b̌ − a + r;β) is jointly
concave in (b̌, a, r) for a ∈ [0, b̌] and r ∈ [0, y]. Hence,

max
a:a≤b̌,r:r≤y

{
fb(r) − fc(b̌) − βc(h, a) + J t

dec(b̌ − a + r;β)

}

is concave with b̌ because the maximum of jointly concave
function is also concave. Then, from (10), we have J t+1

dec (b̌;β)
is concave since the expectation preserves the concavity. We
conclude that Jdec(b̌;β) is concave decreasing with b̌.

We now prove the monotonicity of the control actions. By
assumptions (A3), (A4) and the concavity of Jdec(b̌;β), we

have the function fb(r)−fc(b)−βc(h, a)+Jdec(b−a+ r;β)
is supermodular in (b, a) for a ∈ [0, b] and submodular in
(b, r) for r ∈ [0, y]. Then, by applying Topkis’s Monotonicity
Theorem (Theorems 1, 2 in [22]) to (8), the scheduling action
a∗(b, h, y) is non-decreasing with b and the admission control
action r∗(b, h, y) are non-increasing with b. Moreover, that
r∗(b, h, y) is non-decreasing with y is obvious since when y
increases, the optimization domain [0, y] for r becomes larger.
To show that a∗(b, h, y) is non-decreasing with y, we can use
change of variable r̄ = y − r to equivalently rewrite (8) as:

argmax
a:a≤b
r̄:r̄≤y

{
fb(y−r̄)−fc(b)−βc(h, a)+Jdec(b−a+y−r̄;β)

}
.

We can see that the new optimized function is supermodular in
(y, a). Hence, by Topkis’s Monotonicity Theorem, a∗(b, h, y)
is non-decreasing with y.

The monotonicity of the control actions with respect to
h can be established using the analogous arguments. We
should note the function c(h, a) is supermodular in (h, a) by
assumption (A4). This concludes the proof of Theorem 1.

Appendix C: Proof of Theorem 3

Most of the proofs of Theorem 3 follows analogous argu-
ments as these of Theorem 1 using the corresponding RVIA
equations. Hence, it is omitted for brevity. For the threshold
type solution of the admission control policy, we note that
since (20) is a constrained concave maximization problem, the
optimal solution r∗(b̂, y) is obtained by taking the derivative
and setting r∗ to the local maximum found on the interval
[0, y] (possibly achieved at the end points). The optimal ad-
mission control action r∗(b̂, y) is thus given by (21) where B̄ is
uniquely defined such that ∂Vad(B̃;β)/∂b̂+ ∂fb(B̄)/∂r = 0.
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